The limitations of vaccinations to eradicate the covid-19 pandemic because of many environmental, socioeconomic and demographic factors driving diffusion



This study analyses the relation between people fully vaccinated and mortality to assess the effectiveness of this health policy to cope with COVID-19 pandemic between a sample of 150 countries. Statistical analyses show a positive correlation between share of people fully vaccinated and total COVID-19 mortality in early 2022 (r= 0.65, p-value <.01). These results suggest that COVID-19 vaccinations cannot be a sufficient policy response to eradicate the overall negative impact of the new infectious disease in society. Although high levels of vaccinations in some countries, many demographic (density of population), environmental (air pollution), technological (equipment of non-invasive ventilators), biological (new variants), socioeconomic (health expenditures) factors, etc., influence the diffusion and negative effects of COVID-19 pandemic society. This study can provide new knowledge to improve crisis management and the preparedness of countries to cope with or prevent future pandemic crisis and negative effects in socioeconomic systems.

Keywords. COVID-19 pandemic; Vaccination campaign; Health policy; Innovative technology; Fatality rate; Policy responses; Air pollution; Temperature; Wind speed; Variants; Health expenditures; Density of people; Crisis management.

JEL. O33; Q01; Q16; Q18.


COVID-19 pandemic; Vaccination campaign; Health policy; Innovative technology; Fatality rate; Policy responses; Air pollution; Temperature; Wind speed; Variants; Health expenditures; Density of people; Crisis management.

Full Text:


Abbasi J. (2020). COVID-19 and mRNA vaccines-first large test for a new approach. JAMA, 324(12), 1125–1127. doi. 10.1001/jama.2020.16866

Ackley, C.A., Lundberg, D.J., Ma, L., (...), Preston, S.H., & Stokes, A.C. (2022). County-level estimates of excess mortality associated with COVID-19 in the United States, SSM - Population Health, 17,101021.

Akamatsu, T., Nagae, T., Osawa, M., Satsukawa, K., Sakai, T., Mizutani, D. (2021). Model-based analysis on social acceptability and feasibility of a focused protection strategy against the COVID-19 pandemic. Scientific Reports, 11(1), 2003. doi. 10.1038/s41598-021-81630-9

Aldila, D., Samiadji, B.M., Simorangkir, G.M., Khosnaw, S.H.A., & Shahzad, M. (2021). Impact of early detection and vaccination strategy in COVID-19 eradication program in Jakarta, Indonesia, BMC Research Notes, 14(1),132-150. doi. 10.1186/s13104-021-05540-9

Anderson, R.M., Vegvari, C., Truscott, J., & Collyer, B.S. (2020). Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. Lancet (London, England), 396(10263), 1614–1616. doi. 10.1016/S0140-6736(20)32318-7

Angelopoulos, A.N., Pathak, R., Varma, R., & Jordan, M.I. (2020). On identifying and mitigating bias in the estimation of the COVID-19 case fatality rate. Harvard Data Science Review. doi. 10.1162/99608f92.f01ee285

Ardito, L., Coccia M., & Messeni, P.A. (2021). Technological exaptation and crisis management: Evidence from COVID-19 outbreaks. R&D Management, 51(4), 381-392. 10.1111/radm.12455

Aschwanden C. (2020). The false promise of herd immunity for COVID-19. Nature. Nov. 587(7832), 26-28. doi. 10.1038/d41586-020-02948-4

Aschwanden C. 2021. Five reasons why COVID herd immunity is probably impossible. Nature, 591(7851), 520–522. doi. 10.1038/d41586-021-00728-2

Barnard, S., Chiavenna, C., Fox, S., Charlett, A., Waller, Z., Andrews, N., Goldblatt, P., (...), De Angelis, D. (2021). Methods for modelling excess mortality across England during the COVID-19 pandemic, Statistical Methods in Medical Research, doi. 10.1177/09622802211046384

Bontempi, E., & Coccia, M. (2021). International trade as critical parameter of COVID-19 spread that outclasses demographic, economic, environmental, and pollution factors, Environmental Research, vol.201, Article number 111514, 10.1016/j.envres.2021.111514

Bontempi, E., Coccia, M., Vergalli, S., & Zanoletti, A. (2021). Can commercial trade represent the main indicator of the COVID-19 diffusion due to human-to-human interactions? A comparative analysis between Italy, France, and Spain, Environmental Research, 201, Article number 111529, 10.1016/j.envres.2021.111529

Coccia, M. (2003). Metrics of R&D performance and management of public research institute, Proceedings of IEEE- IEMC 03, Piscataway, pp. 231-236.

Coccia, M. (2005). A taxonomy of public research bodies: a systemic approach, Prometheus, 23(1), 63-82. doi. 10.1080/0810902042000331322

Coccia, M. (2005a). Countrymetrics: valutazione della performance economica e tecnologica dei paesi e posizionamento dell’Italia, Rivista Internazionale di Scienze Sociali, 113(3), 377-412.

Coccia, M. (2008). Measuring scientific performance of public research units for strategic change. Journal of Informetrics, 2(3), 183-194. doi. 10.1016/j.joi.2008.04.001

Coccia, M. (2013). Population and technological innovation: the optimal interaction across modern countries, Working Paper Ceris del Consiglio Nazionale delle Ricerche, vol.15, n.7.

Coccia, M. (2014). Steel market and global trends of leading geo-economic players. International Journal of Trade and Global Markets, 7(1), 36-52. doi. 10.1504/IJTGM.2014.058714

Coccia, M. (2015). Spatial relation between geo-climate zones and technological outputs to explain the evolution of technology. Int. J. Transitions and Innovation Systems, 4(1), 5-21. doi. 10.1504/IJTIS.2015.074642

Coccia, M. (2016). Problem-driven innovations in drug discovery: co-evolution of the patterns of radical innovation with the evolution of problems, Health Policy and Technology, 5(2), 143-155. doi. 10.1016/j.hlpt.2016.02.003

Coccia, M. (2017). Varieties of capitalism’s theory of innovation and a conceptual integration with leadership-oriented executives: the relation between typologies of executive, technological and socioeconomic performances. Int. J. Public Sector Performance Management, 3(2), 148–168. doi. 10.1504/IJPSPM.2017.084672

Coccia, M. (2017a). Disruptive firms and industrial change, Journal of Economic and Social Thought, 4(4), 437-450. doi. 10.1453/jest.v4i4.1511

Coccia, M. (2017b). New directions in measurement of economic growth, development and under development, Journal of Economics and Political Economy, 4(4), 382-395. doi. 10.1453/jepe.v4i4.1533

Coccia, M. (2017c). Sources of disruptive technologies for industrial change. L’industria –Rivista di Economia e Politica Industriale, 38(1), 97-120. doi. 10.1430/87140

Coccia, M. (2017d). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, 29(9), 1048-1061. doi. 10.1080/09537325.2016.1268682

Coccia, M. (2018). An introduction to the methods of inquiry in social sciences, Journal of Social and Administrative Sciences, 5(2), 116-126. doi. 10.1453/jsas.v5i2.1651

Coccia, M. (2018a). An introduction to the theories of institutional change, Journal of Economics Library, 5(4), 337-344. doi. 10.1453/jel.v5i4.1788

Coccia, M. (2018b). General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology, Scientometrics, 117(2), 1265-1283. doi. 10.1007/s11192-018-2902-8

Coccia, M. (2018c). The origins of the economics of Innovation, Journal of Economic and Social Thought, 5(1), 9-28. doi. 10.1453/jest.v5i1.1574

Coccia, M. (2018d). The relation between terrorism and high population growth, Journal of Economics and Political Economy, 5(1), 84-104. doi. 10.1453/jepe.v5i1.1575

Coccia, M. (2018e). Classification of innovation considering technological interaction, Journal of Economics Bibliography, 5(2), 76-93. doi. 10.1453/jeb.v5i2.1650

Coccia, M. (2018f). An introduction to the theories of national and regional economic development, Turkish Economic Review, 5(4), 350-358. doi. 10.1453/ter.v5i4.1794

Coccia, M. (2019). Metabolism of public organizations: A case study, Journal of Social and Administrative Sciences, 6(1), 1-9. doi. 10.1453/jsas.v6i1.1793

Coccia, M. (2019a). The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting, Technological Forecasting and Social Change, 141, 289-304. doi. 10.1016/j.techfore.2018.12.012

Coccia, M. (2019b). A Theory of classification and evolution of technologies within a Generalized Darwinism, Technology Analysis & Strategic Management, 31(5), 517-531. doi. 10.1080/09537325.2018.1523385

Coccia, M. (2019l). Theories and the reasons for war: a survey. Journal of Economic and Social Thought, 6(2), 115-124. doi. 10.1453/jest.v6i2.1890

Coccia, M. (2020a). Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Science of The Total Environment, 729, n.138474. doi. 10.1016/j.scitotenv.2020.138474

Coccia, M. (2020b). How (Un)sustainable Environments are Related to the Diffusion of COVID-19: The Relation between Coronavirus Disease 2019, Air Pollution, Wind Resource and Energy. Sustainability, 12, 9709. doi. 10.3390/su12229709

Coccia, M. (2020c). How do environmental, demographic, and geographical factors influence the spread of COVID-19. Journal of Social and Administrative Sciences, 7(3), 169-209. doi. 10.1453/jsas.v7i3.2018

Coccia, M. (2020d). Destructive Technologies for Industrial and Corporate Change. In: Farazmand A. (eds), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham. doi. 10.1007/978-3-319-31816-5_3972-1

Coccia, M. (2020e). Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, 60, 1-11, art. no.101198. doi. 10.1016/j.techsoc.2019.101198

Coccia, M. (2020f). How does science advance? Theories of the evolution of science. Journal of Economic and Social Thought, 7(3), 153-180. doi. 10.1453/jest.v7i3.2111

Coccia, M. (2020g). The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics, Scientometrics, 124, 451-487. doi. 10.1007/s11192-020-03464-y

Coccia, M. (2020h). Multiple working hypotheses for technology analysis, Journal of Economics Bibliography, 7(2), 111-126. doi. 10.1453/jeb.v7i2.2050

Coccia, M. (2020i). Asymmetry of the technological cycle of disruptive innovations. Technology Analysis & Strategic Management, 32(12), 1462-1477. doi. 10.1080/09537325.2020.1785415

Coccia, M., Bellitto, M. (2018). Human progress and its socioeconomic effects in society, Journal of Economic and Social Thought, 5(2), 160-178. doi. 10.1453/jest.v5i2.1649

Coccia, M., Benati, I. (2018). Rewards in public administration: A proposed classification, Journal of Social and Administrative Sciences, 5(2), 68-80. doi. 10.1453/jsas.v5i2.1648

Coccia, M., Benati, I. (2018a). Comparative Models of Inquiry, A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer International Publishing AG, part of Springer Nature. doi. 10.1007/978-3-319-31816-5_1199-1

Coccia, M., Cadario, E. (2014). Organisational (un)learning of public research labs in turbulent context. International Journal of Innovation and Learning, 15(2), 115-129. doi. 10.1504/IJIL.2014.059756

Coccia, M., Finardi, U. (2012). Emerging nanotechnological research for future pathway of biomedicine. International Journal of Biomedical nanoscience and nanotechnology, 2(3-4), 299-317. doi. 10.1504/IJBNN.2012.051223

Coccia, M., Finardi, U. (2013). New technological trajectories of non-thermal plasma technology in medicine. Int. J. Biomedical Engineering and Technology, 11(4), 337-356. doi. 10.1504/IJBET.2013.055665

Coccia, M., Rolfo, S. (2000). Ricerca pubblica e trasferimento tecnologico: il caso della regione Piemonte in Rolfo S. (eds) Innovazione e piccole imprese in Piemonte, Franco Angeli Editore, Milano (Italy).

Coccia, M., Rolfo, S. (2008). Strategic change of public research units in their scientific activity, Technovation, 28(8), 485-494. doi. 10.1016/j.technovation.2008.02.005

Coccia, M., Wang, L. (2015). Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy, Technological Forecasting & Social Change, 94(1), 155–169. doi. 10.1016/j.techfore.2014.09.007

Coccia, M., Wang, L. (2016). Evolution and convergence of the patterns of international scientific collaboration, Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2057-2061. doi. 10.1073/pnas.1510820113

Coccia, M., Watts, J. (2020). A theory of the evolution of technology: technological parasitism and the implications for innovation management, Journal of Engineering and Technology Management, 55(2020), 101552. doi. 10.1016/j.jengtecman.2019.11.003

Cornell, A, Knutsen, C.H., Teorell, J. (2020). Bureaucracy and Growth. Comparative Political Studies. 53(14), 2246-2282. doi. 10.1177/0010414020912262

Caliskan B., Nihan Özengin, S. Sıddık Cindoruk 2020. Air quality level, emission sources and control strategies in Bursa/Turkey. Atmospheric Pollution Research, In press, 10.1016/j.apr.2020.05.016

Copat C., Cristaldi A., Fiore M., (...), Conti G.O., & Ferrante M. (2020). The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review. Environmental Research, 191,110129. doi. 10.1016/j.envres.2020.110129

Davies, N.G., Jarvis, C.I., van Zandvoort, K., Clifford, S., Sun, F.Y., Funk, S., Medley, G., (...), & Keogh, R.H. (2021). Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7, Nature, 593(7858), 270-274. doi. 10.1038/s41586-021-03426-1

de Vlas, S. J., Coffeng, L. E. 2021. Achieving herd immunity against COVID-19 at the country level by the exit strategy of a phased lift of control. Scientific reports, 11(1), 4445. 10.1038/s41598-021-83492-7

Fontanet, A., Autran, B., Lina, B., Kieny, M.P., Karim, S.S.A., Sridhar, D. (2021). SARS-CoV-2 variants and ending the COVID-19 pandemic, The Lancet, 397(10278), 952-954. doi. 10.1016/S0140-6736(21)00370-6

Garber, A.M. (2021). Learning from excess pandemic deaths, Journal of the American Medical Association, 325(17), 1729-1730. doi. 10.1001/jama.2021.5120

IMARC, (2022). Mechanical Ventilators Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast, 2021-2026.

Islam, N., Shkolnikov, V. M., Acosta, R. J., Klimkin, I., Kawachi, I., Irizarry, R. A., Alicandro, G., Khunti, K., Yates, T., Jdanov, D. A., White, M., Lewington, S., & Lacey, B. (2021). Excess deaths associated with covid-19 pandemic in 2020: age and sex disaggregated time series analysis in 29 high income countries. BMJ, 373, n1137. 10.1136/bmj.n1137

Johns Hopkins Center for System Science and Engineering, (2022). Coronavirus COVID-19 Global Cases, accessed in 14 January 2022. [Retrieved from].

Kapitsinis, N. (2020). The underlying factors of the COVID-19 spatially uneven spread. Initial evidence from regions in nine EU countries. Regional Science Policy and Practice, 12(6), 1027-1045. doi. 10.1111/rsp3.12340

Kiang, M.V., Irizarry, R.A., Buckee, C.O., Balsari, S. (2020). Every body counts: Measuring mortality from the COVID-19 pandemic, Annals of Internal Medicine, 173(12), 1004-1007. doi. 10.7326/M20-3100

Lau, H., Khosrawipour, T., Kocbach, P., Ichii, H., Bania, J., Khosrawipour, V. (2021). Evaluating the massive underreporting and undertesting of COVID-19 cases in multiple global epicenters. Pulmonology, 27(2), 110–115. doi. 10.1016/j.pulmoe.2020.05.015

Liu Z., Magal P., Webb G. (2021). Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom. Journal of Theoretical Biology, 509, 110501. 10.1016/j.jtbi.2020.110501

Mayo, C. (2021). Different types of COVID-19 vaccines: How they work. accessed 6 September 2021. [Retrieved from].

Moore, S., Hill, E.M., Tildesley, M.J., Dyson, L., & Keeling, M.J. (2021). Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study ((2021) The Lancet Infectious Diseases, 21(6), 793-802. doi. 10.1016/s1473-3099(21)00143-2

Nicastro, F., Sironi, G., Antonello, E., (...), Trabattoni, D., & Clerici, M. (2021). Solar UV-B/A radiation is highly effective in inactivating SARS-CoV-2, Scientific Reports 11(1),14805. doi. 10.1038/s41598-021-94417-9

Our World in Data, (2022). Coronavirus (COVID-19) Vaccinations - Statistics and Research - Our World in Data. Accessed 25 January. [Retrieved from].

Pagliaro, M., Coccia M. (2021). How self-determination of scholars outclasses shrinking public research lab budgets, supporting scientific production: a case study and R&D management implications. Heliyon. 7(1), n.1e05998. doi. 10.1016/j.heliyon.2021.e05998

Papanikolaou, V., Chrysovergis, A., Ragos, V., Tsiambas, E., Katsinis, S., Manoli, A., Papouliakos, S., Roukas, D., Mastronikolis, S., Peschos, D., Batistatou, A., Kyrodimos, E., Mastronikolis, N. (2022). From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene, 814, 146134. doi. 10.1016/j.gene.2021.146134

Prieto-Curiel, R., González Ramírez, H. (2021). Vaccination strategies against COVID-19 and the diffusion of anti-vaccination views, Scientific Reports, 11(1), 6626. doi. 10.1038/s41598-021-85555-1

Pronti, A., Coccia, M. (2020). Multicriteria analysis of the sustainability performance between agroecological and conventional coffee farms in the East Region of Minas Gerais (Brazil). Renewable Agriculture and Food Systems, 36(3), 299-306. doi. 10.1017/S1742170520000332

Randolph, H.E., Barreiro, L.B. (2020). Herd immunity: understanding COVID-19. Immunity, 52, 737–741.

Ritchie, H., Ortiz-Ospina, E., Beltekian, D., Mathieu, E., Hasel, J., Macdonald, B., Giattino, C., Roser, M. (2020). Policy Responses to the Coronavirus Pandemic. Our World in Data, Statistics and Research. July 7. [Retrieved from].

Rosario Denes K.A., Mutz Yhan S., Bernardes Patricia C., & Conte-Junior Carlos A., (2020). Relationship between COVID-19 and weather: Case study in a tropical country. International Journal of Hygiene and Environmental Health, 229, 113587. doi. 10.1016%2Fj.ijheh.2020.113587

Saadi, N., Chi, Y.-L., Ghosh, S., (...), Jit, M., & Vassall, A. (2021). Models of COVID-19 vaccine prioritisation: a systematic literature search and narrative review, BMC Medicine, 19(1), 318-340. doi. 10.1186/s12916-021-02190-3

Sanmarchi, F., Golinelli, D., Lenzi, J., Esposito, F., Capodici, A., Reno, C., & Gibertoni, D. (2021). Exploring the gap between excess mortality and COVID-19 deaths in 67 countries, JAMA Network Open, 4(7), no.e2117359. doi. 10.1001/jamanetworkopen.2021.17359

Seligman B, Ferranna M, Bloom D.E. (2021). Social determinants of mortality fromCOVID-19: A simulation study using NHANES. PLoS Med, 18(1), e1003490. doi. 10.1371/journal.pmed.1003490

Shattock, A.J., Le Rutte, E.A., Dünner, R.P., (...), Chitnis, N., & Penny, M.A. (2022). Impact of vaccination and no n-pharmaceutical interventions on SARS-CoV-2 dynamics in Switzerland, Epidemics, 38,100535.

Soo Hoo G.W. (2010). Noninvasive ventilation in adults with acute respiratory distress: a primer for the clinician. Hospital Practice, 38(1), 16–25. doi. 10.3810/hp.2010.02.275

Soo Hoo G.W. (2020). Noninvasive ventilation. Medscape. Accessed January 2021, [Retrieved from].

Stokes, A. C., Lundberg, D.J., Bor, J., & Bibbins-Domingo, K. (2021). Excess Deaths During the COVID-19 Pandemic: Implications for US Death Investigation Systems. American Journal of Public Health, 111(S2), S53–S54. 10.2105/AJPH.2021.306331

Stokes, A.C., Lundberg, D.J., Elo, I.T., Hempstead, K., Bor, J., & Preston, S.H. (2021a). COVID-19 and excess mortality in the United States: A county-level analysis, PLoS Medicine, 18(5), no.e1003571. doi. 10.1371/journal.pmed.1003571

The World Bank (2022a). Data, Population, total. Accessed January 2022. [Retrieved from].

The World Bank, (2022). Current health expenditure (% of GDP), Accessed February 2022. [Retrieved from].

Vinceti, M., Filippini, T., Rothman, K.J., Di Federico, S., & Orsini, N. (2021). SARS-CoV-2 infection incidence during the first and second COVID-19 waves in Italy. Environmental research, 197, 111097. doi. 10.1016/j.envres.2021.111097

Woolf, S.H., Chapman, D.A., Sabo, R.T., & Zimmerman, E.B. (2021). Excess deaths from COVID-19 and other causes in the US, March 1, 2020, to January 2, 2021, Journal of the American Medical Association, 325(17), 1786-1789. doi. 10.1001/jama.2021.5199



  • There are currently no refbacks.

Journal of Economic and Social Thought - J. Econ. Soc. Thoug. - JEST -

ISSN: 2149-0422

Editor:   Secretarial:   Istanbul - Turkey.

Copyright © KSP Library