The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies



Abstract. This study suggests the fishbone diagram for technological analysis. Fishbone diagram (also called Ishikawa diagrams or cause-and-effect diagrams) is a graphical technique to show the several causes of a specific event or phenomenon. In particular, a fishbone diagram (the shape is similar to a fish skeleton) is a common tool used for a cause and effect analysis to identify a complex interplay of causes for a specific problem or event. The fishbone diagram can be a comprehensive theoretical framework to represent and analyze the sources of innovation. Fishbone diagram is applied here as a novel graphical representation to identify, explore and analyse whenever possible, the potential root causes of the source and evolution of General Purpose Technologies (GPTs). Overall, then, fishbone diagram seems to be an appropriate and general technique of graphical representation to explore and categorize, clearly and simply, the potential root causes of the evolution of technological innovations for an appropriate management of technology.

Keywords. Fishbone diagram, General purpose technology, Source of technical change, Management of technology, Technology evolution, Evolution of technology.

JEL. B40, O31, O33.


Fishbone diagram; General purpose technology; Source of technical change; Management of technology; Technology evolution; Evolution of technology.

Full Text:


Acemoglu, D., Johnson, S., Robinson, J.A., & Yared, P. (2008). Income and democracy, American Economic Review, 98(3), 808-842. doi. 10.1257/aer.98.3.808

Atuahene-Gima, K., & Wei, Y. (2011). The vital role of problem-solving competence in new product success, Journal of Product Innovation Management, 28(1), 81-98. doi. 10.1111/j.1540-5885.2010.00782.x

Audretsch, D.B., & Feldman, M.P. (1996). R&D spillovers and the geography of innovation and production, The American Economic Review, 86(3), 630-640.

Ayverdia, L., Nakiboğlu, C., & Aydın, S.Ö.Z. (2014). Usage of Graphic Organizers in Science and Technology Lessons”, Procedia - Social and Behavioral Sciences, 116, 4264-4269. doi. 10.1016/j.sbspro.2014.01.929

Barro, R.J. (1999). Determinants of democracy, Journal of Political Economy, 107(6), 158-183. doi. 10.1086/250107

Barro, R.J., & McCleary, R. (2003). Religion and economic growth across countries, American Sociological Review, 68(5), 760-781. doi. 10.2307/1519761

Barro, R.J., & McCleary, R. (2005). Which countries have state religions, Quarterly Journal of Economics, 120(4), 1331-1370. doi. 10.1162/003355305775097515

Basalla G. (1988) The History of Technology, Cambridge University Press, Cambridge.

Bettencourt, L.M.A, Lobo, J., Helbing, D., Kühnert, C., & West, G.B. (2007). Growth, innovation, scaling, and the pace of life in cities, PNAS, 104(17), 7301-7306. doi. 10.1073/pnas.0610172104

Bettendorf, L., & Dijkgraaf, E. (2010). Religion and income: Heterogeneity between countries, Journal of Economic Behavior & Organization, 74(1-2), 12-29. doi. 10.1016/j.jebo.2010.02.003

Boserup, E. (1981) Population and Technological Change: A Study of Long-term Trends, University of Chicago Press, Chicago.

Bresnahan, T. (2010). General purpose technologies, in B.H. Hall & N. Rosenberg (eds.) Handbook of the Economics of Innovation, Ch. 18, Vol. 2, Elsevier.

Bresnahan, T.F., & Trajtenberg M. (1995). General purpose technologies: ‘engines of growth’?, Journal of Econometrics, Annals of Econometrics, 65(1), 83-108. doi. 10.1016/0304-4076(94)01598-T

Buyukdamgaci, G. (2003) Process of organizational problem definition: how to evaluate and how to improve, Omega, 31(4), 327-338.

Calvano, E. (2007). Destructive creation, Stockholm School of Economics. Working Paper Series in Economics and Finance, No.653. [Retrieved from].

Coccia, M. (2005). Measuring intensity of technological change: The seismic approach, Technological Forecasting and Social Change, 72(2), 117–144. doi. 10.1016/j.techfore.2004.01.004

Coccia, M. (2005a). Technometrics: Origins, historical evolution and new direction, Technological Forecasting & Social Change, 72(8), 944-979. doi. 10.1016/j.techfore.2005.05.011

Coccia, M. (2005b). Countrymetrics: valutazione della performance economica e tecnologica dei paesi e posizionamento dell’Italia, Rivista Internazionale di Scienze Sociali, CXIII(3), 377-412.

Coccia, M. (2007). A new taxonomy of country performance and risk based on economic and technological indicators, Journal of Applied Economics, 10(1), 29-42.

Coccia, M. (2009). What is the optimal rate of R&D investment to maximize productivity growth?, Technological Forecasting & Social Change, 76(3), 433-446. doi. 10.1016/j.techfore.2008.02.008

Coccia, M. (2009a). Measuring the impact of sustainable technological innovation, International Journal of Technology Intelligence and Planning, 5(3), 276-288. doi. 10.1504/IJTIP.2009.026749

Coccia, M. (2010). Democratization is the driving force for technological and economic change, Technological Forecasting & Social Change, 77(2), 248-264. doi. 10.1016/j.techfore.2009.06.007

Coccia, M. (2010a). The asymmetric path of economic long waves, Technological Forecasting & Social Change, 77(5), 730-738. doi. 10.1016/j.techfore.2010.02.003

Coccia, M. (2010b). Foresight of technological determinants and primary energy resources of future economic long waves, International Journal of Foresight and Innovation Policy, 6(4), 225–232. doi. 10.1504/IJFIP.2010.037468

Coccia, M. (2012). Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia, Technovation, 32(6), 370–379. doi. 10.1016/j.technovation.2012.03.005

Coccia, M. (2014). Socio-cultural origins of the patterns of technological innovation: What is the likely interaction among religious culture, religious plurality and innovation? Towards a theory of socio-cultural drivers of the patterns of technological innovation, Technology in Society, 36(1), 13-25. doi. 10.23760/2421-7158.2017.004

Coccia, M. (2014a). Driving forces of technological change: The relation between population growth and technological innovation-Analysis of the optimal interaction across countries, Technological Forecasting & Social Change, 82(2), 52-65. doi. 10.1016/j.techfore.2013.06.001

Coccia, M. (2015). General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development, Technology in Society, 42, 199-226. doi. 10.1016/j.techsoc.2015.05.008

Coccia, M. (2015a). Patterns of innovative outputs across climate zones: the geography of innovation, Prometheus. Critical Studies in Innovation, 33, 165-186. doi. 10.1080/08109028.2015.1095979

Coccia, M. (2016). Problem-driven innovations in drug discovery: co-evolution of radical innovation with the evolution of problems, Health Policy and Technology, 5(2), 143-155. doi. 10.1016/j.hlpt.2016.02.003

Coccia, M., & Wang, L. (2015). Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy, Technological Forecasting and Social Change, 94, 155–169. doi. 10.1016/j.techfore.2014.09.007

Colombo, M.G., Franzoni, C., & Veugelers, R. (2015). Going radical: producing and transfering disruptive innovation, The Journal of Technology Transfer, 4(4), 663-669. doi. 10.1007/s10961-014-9361-z

De Marchi, M. (2016). A taxonomy of S&T indicators, Scientometrics, 106(3), 1265–1268. doi. 10.1007/s11192-015-1823-z

Feldman, M.P., & Kogler, D. F. (2010). Stylized Facts in the Geography of Innovation, in B. Hall & N. Rosenberg (Eds), Handbook of Economics of Technical Change, 1, (pp. 381-410), Elsevier.

Freeman, C., & Soete, L. (1987). Technical change and full employment, Basil Blackwell, Oxford, UK.

Goel, R.J., Payne, J.E., Ram, R. (2008). R&D expenditures and U.S. economic growth: A disaggregated approach, Journal of Policy Modeling, 30(2), 237–250. doi. 10.1016/j.jpolmod.2007.04.008

Goldfarb, B. (2005). Diffusion of general purpose technologies: understanding patterns in the electrification of US Manufacturing 1880–1930, Industrial and Corporate Change 14, 745–773. doi. 10.1093/icc/dth068

Griffith, R., Redding, S., & Van Reenen, J. (2004). Mapping the two Faces of R&D: Productivity growth in a Panel of OECD Industries, Review of Economics and Statistics, 86(4), 883–895. doi. 10.1162/0034653043125194

Guiso, L., Sapienza, P., & Zingales, L. (2003). People’s opium? Religion and economic attitudes, Journal of Monetary Economics, 50(1), 225-282. doi. 10.1016/S0304-3932(02)00202-7

Guiso, L., Sapienza, P., & Zingales, L. (2006). Does culture affect economic outcomes?, The Journal of Economic Perspectives, 20(2), 23-48. doi. 10.1257/jep.20.2.23

Hall, B.H., & Rosenberg, N. (2010). Handbook of the Economics of Innovation, Vol.1; 2, Elsevier.

Helpman, E. (1998). General Purpose Technologies and Economic Growth. MIT Press, Cambridge, MA.

Howells, J., & Bessant,J. (2012). Innovation and economic geography: A review and analysis, Journal of Economic Geography, 12(5), 929-942. doi. 10.1093/jeg/lbs029

Hudson, R. (2001) Producing Places, Guildford, NY.

Ishii, K., & Lee, B. (1996). Reverse fishbone diagram: a tool in aid of design for product retirement, Proceedings ASME design engineering technical conferences and computers in engineering conference, 96-DETC/DFM-1272.

Ishikawa, K. (1990) Introduction to Quality Control, Taylor & Francis.

Jones, C.I., & Williams, J.C. (1998). Measuring the social return to R&D, The Quarterly Journal of Economics, 113(4), 1119–1135. doi. 10.1162/003355398555856

Jovanovic, B., & Rousseau, P.L. (2005). General purpose technologies, in P. Aghion & S.N. Durlauf (Eds), Handbook of Economic Growth, Volume 1B. Elsevier.

Kremer, M. (1993). Population growth and technological change: one million B.C. to 1990, Quarterly Journal of Economics, 108(3), 681-716. doi. 10.2307/2118405

Krugman, P. (1991). Geography and Trade, MIT Press, Cambridge.

Kuznets, S. (1960). Population change and aggregate output, in Demographic and Economic Change in Developed Countries, Special Conference Series No.11 Universities-National Bureau for Economic Research (Princeton University Press: Princeton), pp. 324-340. Reprinted in Economic Growth and Structure: Selected Essays. New York: W.W. Norton & Co., 1965.

Li, M. (2015). A novel three-dimension perspective to explore technology evolution, Scientometrics, 105(3), 1679-1697. doi. 10.1007/s11192-015-1591-9

Lichtenberg, R.M. (I960) One-tenth of a Nation: National Fortes in the Economic Growth of the New York Region, Harvard University Press, Cambridge, MA.

Lipsey, R.G., Bekar, C.T., & Carlaw, K.I. (1998). What requires explanation?, in Helpman E. (ed.) General Purpose Technologies and Long-Term Economic Growth, (pp.15-54), MIT Press, Cambridge, MA.

Lipsey, R.G., Carlaw, K.I., & Bekar, C.T. (2005). Economic Transformations: General Purpose Technologies and Long Term Economic Growth, Oxford University Press, Oxford.

Mamuneas, T.P., & Nadiri, M.I. (1996). Public R&D policies and cost behavior of the US manufacturing industries, Journal of Public Policy, 63(1), 57–81. doi. 10.1016/S0047-2727(96)01588-5

Maridal, J.H. (2013). Cultural impact on national economic growth, The Journal of Socio-Economics, 47, 136-146. doi. 10.1016/j.socec.2012.08.002

Modelski, G., & Perry, G. III, (2002). Democratization in long perspective revisited, Technological Forecasting and Social Change, 69(4), 359-376. doi. 10.1016/S0040-1625(01)00152-4

Montesquieu, C. (1947). The Spirit of Laws, Harper and Row, New York.

Moseley, W.G., Perramond, E., Hapke, H.M., & Loris, P. (2014). An Introduction to Human-Environment Geography, Wiley.

Norris, P. (2008). Driving Democracy: Do Power-Sharing Regimes Work?, Cambridge University Press, Cambridge (UK).

Ramahrishna, H.V., & Brightman, H.J. (1986). The fact-net model: a problem diagnosis procedure, Interfaces, 16(6), 86–94. doi. 10.1287/inte.16.6.86

Ristuccia, C.A., & Solomou, S. (2014). Can general purpose technology theory explain economic growth? Electrical power as a case study, European Review of Economic History, 18(3), 227-247. doi. 10.1093/ereh/heu008

Robinson, D.K.R., Ruivenkamp, M., & Rip, A. (2007). Tracking the evolution of new and emerging S&T via statement-linkages: Vision assessment in molecular machines, Scientometrics, 70(3), 831–858. doi. 10.1007/s11192-007-0314-2

Rosegger, G. (1980). The Economics of Production and Innovation, Pergamon Press, NY.

Rosenberg, N. (1982) Inside the Black Box: Technology and Economics, Cambridge University Press.

Rosenberg, N.J. (1992). Adaptation of agriculture to climate change, Climatic Change, 21(4), 385-405. doi. 10.1007/BF00141378

Ruttan, V.W. (1997). Induced innovation, evolutionary theory and path dependence: sources of technical change, Economic Journal, 107(444), 1520–1529. doi. 10.1111/j.1468-0297.1997.tb00063.x

Ruttan, V.W. (2001). Technology, Growth and Development, An Induced Innovation Perspective, Oxford University Press, New York.

Ruttan, V.W. (2006). Is War Necessary For Economic Growth? Military Procurement and Technology Development, Oxford University Press, New York.

Sahal, D. (1981). Patterns of Technological Innovation, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.

Schultz, L.I., & Joutz, F.L. (2010). Methods for identifying emerging General Purpose Technologies: a case study of nanotechnologies, Scientometrics, 85(1), 155–170. doi. 10.1007/s11192-010-0244-2

Scientometrics, (1984). Indicators of measurement of impact of science and technology on socio-economic development objectives, Scientometrics, 6(6), 449-463.

Simon, J.L. (1977) The Economics of Population Growth, Princeton University Press: Princeton.

Singer C., Holmyard E.J., Hall A.R., & Williams T.I. (1956). A History of Technology, Vol. I and II, Clarendon Press, Oxford University Press.

Smithers, J., & Blay-Palmer, A. (2001). Technology innovation as a strategy for climate adaptation in agriculture, Applied Geography, 21(2), 175–197. doi. 10.1016/S0143-6228(01)00004-2

Spolaore, E., & Wacziarg, R. (2013). How deep are the roots of economic development?, Journal of Economic Literature, 51(2), 1-45. doi. 10.1257/jel.51.2.325

Strulik, H. (2005). The role of human capital and population growth in R&D-based models of economic growth, Review of International Economics, 13(1), 129-145. doi. 10.1111/j.1467-9396.2005.00495.x

Thagard, P. (1988). Computational Philosophy of Science, The MIT Press, Cambridge, MA (USA).

Usher, A.P. (1954) A history of mechanical inventions, Harvard University Press, Cambridge.

von Hippel E. (1988). The Sources of Innovation, Oxford University Press.

Wang, C.-C., Sung H.-Y., & Huang M.-H. (2016). Technological evolution seen from the USPC reclassifications, Scientometrics, 107(2), 537-553. doi. 10.1007/s11192-016-1851-3

Weber, M. (1956). The Protestant Ethnic and the Spirit of Capitalism, Unwin, London.

Wright, G. (1997). Towards a more historical approach to technological change, The Economic Journal, 107(444), 1560-1566. doi. 10.1111/j.1468-0297.1997.tb00066.x

Zachariadis, M., (2004). R&D-induced growth in the OECD?, Review of Development Economics, 8(3), 423-439. doi. 10.1111/j.1467-9361.2004.00243.x



  • There are currently no refbacks.

....................................................................................................................................................................................................................................................................................................................................... Journal of Social and Administrative Sciences - J. Adm. Soc. Sci. - JSAS -

ISSN: 2149-0406

Editor:   Secretarial:   Istanbul - Turkey.

Copyright © KSP Library