Nowcasting quarterly GDP growth in Suriname with factor-MIDAS and mixed-frequency VAR models

Sailesh BHAGHOE, Gavin OOFT

Abstract


Abstract. We apply Factor-MIDAS (FaMIDAS) and Mixed-Frequency Vector Autoregression (MF-VAR and MF-Bayesian VAR) to nowcast quarterly GDP growth of Suriname. For this purpose, we use a set of 44 microeconomic indices over the sample period 2012Q1 - 2020Q2. In the target equation, we regress GDP growth upon its first lag and a beta coefficient. In the explanatory equations the first set of monthly regressors explain the variation of growth without lags while the second set of regressors are fitted with two-month lags. We apply three set of samples for model estimations: 2012Q1 – 2019Q3, 2012Q1 – 2020Q1 and 2012Q1 – 2020Q2. Model nowcast accuracy is benchmarked against GDP growth of 2019 and economic activity growth estimated by the monthly GDP indicator of March and June 2020. The models provide mixed results as compared to the benchmark indicators. We select the models with the lowest Root Mean Squared Error (RMSE) and based on own Judgment to nowcast. As the forecast horizon increases from 2019Q4 to 2020Q2, so do the RMSE. To hedge against high biases and variances, we combine the best nowcasts to produce a single nowcast. Furthermore, it appeared that the FaMIDAS and the MF-VAR models deliver adequate results for two nowcast horizons.

Keywords. FaMIDAS; MF-VAR; MF-BVAR; Nowcasting.

JEL. C22; C53; E37.

Keywords


FaMIDAS; MF-VAR; MF-BVAR; Nowcasting.

Full Text:


References


Aït-Sahalia, Y., & Xiu, D. (2015). Principal Component Analysis of High Frequency Data. Princeton University and the University of Chicago.

Aït-Sahalia, Y., & Xiu, D. (2017). Using principal component analysis to estimate a high dimensional factor model with high-frequency data. Journal of Econometrics, 201(2), 384-399. doi. 10.1016/j.jeconom.2017.08.015

Andrawis, R., Atiya, A.F., & El-Shishiny, H. (2011). Combination of long-term and short-term forecasts with application to tourism demand forecasting. International Journal of Forecasting, 27(3), 870-886. doi. 10.1016/j.ijforecast.2010.05.019

António, R., Maximiano, P., & Francisco, C.D. (2009). Dynamic factor models with jagged edge panel data: Taking on board the dynamics of the idiosyncratic components, Banco de Portugal Working Papers, No.w200913.

Atiya, A.F. (2020). Why does forecast combination work so well? International Journal of Forecasting, 36(1), 197-200. doi. 10.1016/j.ijforecast.2019.03.010

Banerjee, A., & Marcellino, M. (2006). Are there any reliable leading indicators for US inflation and GDP growth? International Journal of Forecasting, 22(1), 137-151. doi. 10.1016/j.ijforecast.2005.03.005

Bhaghoe, S., & Eckhorst, K. (2019). Constructing a monthly GDP indicator for Suriname. Journal of Economics Library, 6(4), 310-323.

Bhaghoe, S., Ooft, G., & Franses, Ph.H.B.F. (2019). Estimates of quarterly GDP growth using MIDAS regressions. Econometric Institute Research Papers. [Retrieved from].

Bernanke, B.S., Boivin, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. The Quarterly Journal of Economics, 120(1), 387-422. doi. 10.1162/0033553053327452

Boivin, J., & Ng, S. (2004). Are more data always better for factor analysis? Forthcoming in Journal of Econometrics. Brillinger, David R. Time Series: Data Analysis and Theory. Wiley.

Boivin, J., & Ng, S. (2005), Understanding and comparing factor-based forecasts. International Journal of Central Banking, 1(3), 117-151.

Bouwman, K.E., & Jan, P.A.M.J. (2011). Forecasting with real-time macroeconomic data: The ragged edge problem and revisions. Journal of Macroeconomics, 33(4), 784-792. doi. 10.1016/j.jmacro.2011.04.002

Chiu, C.W., Eraker, B., Foerster, A.T., Kim, T.B., & Seoane, H.D. (2012). Estimating VAR’s sampled at mixed or irregular spaced frequencies: A Bayesian approach. The Federal Reserve Bank of Kansas City, Working Paper, No.11-11.

Chong, Y.Y., & Hendry, D.F. (1986). Econometric evaluation of linear macro-economic models. Review of Economic Studies, 53(4), 671–690. doi. 10.2307/2297611

Clemen, R.T. (1989), Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–581. doi. 10.1016/0169-2070(89)90012-5

Clements, M.P., & Galvão, A.B. (2007). Macroeconomic forecasting with mixed frequency data: Forecasting US output growth and inflation. Queen Mary, University of London, Working Paper, No.616.

Diebold, F.X. (1989). Forecast combination and encompassing: Reconciling two divergent literatures. International Journal of Forecasting, 5(4), 589–592. doi. 10.1016/0169-2070(89)90014-9

Eickmeier, S., & Ziegler, C. (2008). How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach. Journal of Forecasting, 27(3), 237-265. doi. 10.1002/for.1056

Franta, M., Havrlant, D., & Rusnák, M. (2016). Forecasting Czech GDP using mixed-frequency data models. Journal of Business Cycle Research, 12, 165–185. doi. 10.1007/s41549-016-0008-z

Frale, C., & Monteforte, L. (2009). FaMIDAS: A mixed frequency factor model with MIDAS structure. Luiss Lab of European Economics Working Document, No.84.

Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: One-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830-840. doi. 10.1198/016214504000002050

Giannone, D., Reichlin, L., & Small, D. (2005). Nowcasting GDP and inflation: The real-time informational content of macroeconomic data releases. Finance and Economics Discussion Series, No.42.

Giannone, D., Reichlin, L., & Small, D. (2008), Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases. Journal of Monetary Economics, 55(4), 665–676. doi. 10.1016/j.jmoneco.2008.05.010

Ghysels, E. (2012). Mixed frequency vector autoregressive models. Department of Economics, University of North Carolina.

Ghysels, E,, Santa-Clara, P., & Valkanov, R. (2002). The MIDAS touch: Mixed data sampling regression models. UNC and UCLA Working Papers.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS Touch: Mixed Data Sampling Regression Models, Mimeo.

Ghysels, E., & Valkanov, R. (2006). Linear Time Series Processes with Mixed Data Sampling and MIDAS Regression Models, Mimeo.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417- 441. doi. 10.1037/h0071325

Kourentzes, N., & Petropoulos, F. (2016). Forecasting with multivariate temporal aggregation: The case of promotional modelling. International Journal of Production Economics, 181, 145-153. doi. 10.1016/j.ijpe.2015.09.011

Kuzin, V., Marcellino, M., & Schumacher, C. (2011). MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area. International Journal of Forecasting, 27(2), 529–542. doi. 10.1016/j.ijforecast.2010.02.006

Kuzin, V, Marcellino, M., & Schumacher, C. (2009), Midas Versus Mixed-Frequency VAR: Nowcasting GDP in the Euro Area. Bundesbank Series 1 Discussion Paper, [Retrieved from].

Makridakis, S., & Hibon, M. (2000). The M3-competition: Results, conclusions and implications. International Journal of Forecasting, 16(4), 451–476. doi. 10.1016/S0169-2070(00)00057-1

Mariano, R.S., & Murasawa, Y. (2003). A new coincident index of business cycles based on monthly and quarterly series. Journal of Applied Econometrics, 18(4), 427–443. doi. 10.1002/jae.695

Mariano, R.S., & Murasawa, Y. (2010). A coincident index, common factors, and monthly real GDP. Oxford Bulletin of Economics and Statistics, 72(1), 27–46. doi. 10.1111/j.1468-0084.2009.00567.x

Marcellino, M. (2004). Forecast pooling for short time series of macroeconomic variables. Oxford Bulletin of Economic and Statistics, 66(1), 91–112. doi. 10.1111/j.1468-0084.2004.00071.x

Marcellino, M., & Schumacher, C. (2007). MIDAS and Dynamic Linear Models, Mimeo.

Marcellino, M., & Schumacher, C. (2008). Factor-MIDAS for now- and forecasting with ragged-edge data: A model comparison for German GDP. CEPR Discussion Papers, No.6708.

Pesaran, M.H., & Timmermann, A. (2005). Selection of Estimation Window in the Presence of Breaks. Mimeo, Cambridge University and University of California, San Diego.

Schorfheide, F., & Song, D. (2020). Real-time forecasting with a (standard) mixed-frequency VAR during a pandemic. Federal Reserve Bank of Philadelphia Working paper, No.20-26.

Scott, Jr., & John, T. (1966). Factor analysis and regression. Econometrica: Journal of the Econometric Society, 34, 552-562. doi. 0012-9682(196607)34:3%3C552:FAAR%3E2.0.CO;2-C

Sinharay, S. (2010). An overview of statistics in education. In: Peterson, P. et al., Eds., International Encyclopedia of Education, 3rd Edition, Elsevier Ltd., Amsterdam. doi.
10.1016/B978-0-08-044894-7.01719-X

Stock, J.H., & Watson, M. (1998). Diffusion indexes, NBER Working Paper, No.6702.

Stock, J.H., & Watson, M. (1999). Forecasting inflation. Journal of Monetary Economics, 44(2), 293-335. doi. 10.1016/S0304-3932(99)00027-6

Stock, J.H., & Watson, M. (2001), A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series. In: Engle, R.F., & White, H. (Eds.), Festschrift in Honour of Clive Granger, (pp.1-44), Cambridge University Press, Cambridge.

Stock, J.H., & Watson, M. (2004), Combination forecasts of output growth in a seven-country dataset. Journal of Forecasting, 23(6), 405-430. doi. 10.1002/for.928

Timmermann, A. (2006). Forecast combinations. Elliott G., Granger C.W.J., Timmermann A. (Eds.), Handbook of Economic Forecasting, pp.135-196.

Yang, Y. (2004). Combining forecasts procedures: Some theoretical results. Econometric Theory, 20(1), 176-190. doi. 10.1017/S0266466604201086




DOI: http://dx.doi.org/10.1453/jepe.v10i1.2416

Refbacks

  • There are currently no refbacks.




.......................................................................................................................................................................................................................................................................................................................................

Journal of Economics and Political Economy - J. Econ. Pol. Econ. - JEPE - www.kspjournals.org

ISSN: 2148-8347

Editor: [email protected]   Secretarial: [email protected]   Istanbul - Turkey.

Copyright © KSP Library