
Turkish Economic Review 
www.kspjournals.org 

Volume 2                            December 2015                            Issue 4 

 

Mathematics of Predicting Growth 

 

By Ron W. NIELSEN 
a†

 
  

Abstract. Mathematical methods of analysis of data and of predicting growth are 

discussed. The starting point is the analysis of the growth rates, which can be expressed as a 

function of time or as a function of the size of the growing entity. Application of these 

methods is illustrated using the world economic growth but they can be applied to any type 

of growth. 
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1. Introduction 
he usual method of data analysis is based on the examination of changes in 

the size, S, of the growing entity. This simple method can be extended to the 

examination of related distributions such as ( ) 1/F S S
 
or ( ) lnF S S , 

which give a new insight into the interpretation of data.  
The aim of any data analysis should be always to look for the simplest 

mathematical descriptions, which can then be used to explain the mechanism of 

growth. Different representations of data can allow not only for looking at them 

from a new perspective but also for finding a simple way of their analysis. For 
instance, the analysis of the historical economic growth or the growth or human 

population is difficult when using the size of the Gross Domestic Product (GDP) or 

the size of the population because both of them increase hyperbolically and such a 
growth is often interpreted incorrectly. However, their analysis is trivial (Nielsen, 

2014) when using their reciprocal values, 1/ S .  

The aim of the discussion presented in this publication is to explain an 

additional way of analysis of data based on the examination of the growth rates. 

Data are of primary importance in scientific investigations and the more we know 

how to analyse them, the more successful we can be with their interpretations.  
The analys is of data usually starts with their display. If the data vary over a 

large range of values, then displaying them by using linear scales of reference is 

not helpful because while the large values are shown clearly the small values are 
hard to interpret. In such a case it is a standard procedure to present them using 

semilogarithmic frames of reference, because we can then study simultaneously the 

features characterising the small and the large values of data. If in addition the 
range of the independent variable, such as time, is large we could use the 

logarithmic scales for both axes of reference.  

Semilogarithmic scales of reference can be also used to identify exponential 

growth because such a growth is then represented by a straight line. Likewise, 
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displaying the reciprocal values of data, 1/ S , can be used to identify the first-

order hyperbolic growth because it is then represented by a decreasing straight line. 
However, both the semilogarithmic display and the display of the reciprocal values 

of data can also help in studying fine details of growth. 

Such visual examinations of data can and even should be followed by their 

mathematical analysis with the aim of finding a mathematical description of data. 
The important point to remember is that such analysis should be as simple as 

possible, because our ultimate aim is to explain the mechanism of growth, and if 

we use complicated descriptions we can expect complicated explanations, which 
could be unconvincing. The fundamental principle of scientific investigations is to 

look for the simplest solutions and explanations. Unfortunately, this principle is 

often forgotten and it appears that there is a continuing desire to construct 
complicated formulae (e.g. Artzrouni & Komlos, 1985; Galor, 2005a, 2011; 

Johansen, & Sornette, 2001; Khaltourina & Korotayev, 2007; Korotayev, 2005; 

Korotayev, Malkov & Khaltourina, 2006a; 2006b; Lagerlöf, 2003) maybe to 

impress the reader or to have the paper published. Ironically, however, such 
complicated formulae are often not even tested by data. 

We should understand the difference between constructing and deriving 

mathematical formulae. The process of constructing is guided strongly, if not 
entirely, by creative imagination.Various elements are added here and there just 

because they look good or because they appear to do what we want them to do. It is 

usually a translation of concepts into a mathematical language, but incorrect 
concepts remain incorrect even if dressed up in mathematical gowns. Such 

exercises are particularly puzzling when it is already well known that a studied 

process can be described using much simpler mathematical expressions.   

Constructing complicated mathematical formulaebut failing to test them by 
accessible data is not helpful. Devoting 20 years of one’s life (Baum, 2011) into 

developing a complicated theory (Galor, 2005a; 2011) but failing to see that its 

fundamental postulates are contradicted (Nielsen, 2014) by the data used during the 
development of this theory but never properly analysed, does not contribute to the 

advancement of science but only to the advancement of dubious ideas and to the 

irrelevant interpretations of the mechanism of growth. 

In contrast, the process of deriving mathematical formulae starts with the well-
defined assumptions and follows closely the mathematical chain of logical 

reasoning. The final formulae might be complicated but they are still acceptable if 

they are based on the simplest possible starting assumptions. We can question the 
original assumptions but we have no problem with understanding why the final 

formula is expressed in a certain specific way because each step in deriving such a 

formula has been mathematically justified. We do not have such an assurance with 
constructed formulae because they come from nowhere.   

Constructing complicated mathematical expressions is not recommended in 

scientific research but looking for the simplest mathematical representation of data 

is justified because it is far better to base the interpretation of data on the 
mathematical analysis than on pure imagination or at best on a superficial 

examination of data (e.g. Ashraf, 2009; Galor, 2005a, 2005b, 2007, 2008a, 2008b, 

2008c, 2010, 2011, 2012a, 2012b, 2012c; Galor & Moav, 2002; Snowdon & Galor, 
2008). 

When looking for a mathematical description of data, it is recommended to 

represent them, if possible, in such a way that they could be described by using a 
straight line, because straight lines represent not only the simplest descriptions of 

data but also allow for studying deviations from a prevailing trend. For instance, 

hyperbolic growth can be easily identified and described using reciprocal values of 
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data because for the hyperbolic growth the reciprocal values of data decrease 

linearly. Exponential growth can be easily identified by a straight line in the 

semilogarithmic display of data, but we can also try other representation of data 
and reduce them to linear displays. Such approach is not always possible but even 

then we should look for the simplest representation of data and for their simplest 

description.  

After finding the simplest description of data the next step is to try to explain 
why the data follow a certain, mathematically-defined distribution. We are then 

dealing with finding the mechanism of growth.  

The analysis based on the examination of growth rates also starts with finding 
their simplest mathematical descriptions but they have to be then translated into the 

mathematical descriptions of the size of the growing entity. Results of such 

translations might be complicated but they are still acceptable if they are based on 

the simplest mathematical descriptions of the growth rate because the ultimate aim 
of explaining the mechanism of growth is then also simplified. We shall not have 

to explain why the size of the growing entity is described by a complicated 

mathematical distribution but rather why the growth rate can be described in a 
certain simplest way. For instance, we shall see that the linearly-decreasing growth 

rate generates a non-linear growth, which is described by a fairly-complicated 

mathematical formula. The aim of explaining the associated mechanism is then 
reduced to explaining why the growth rate decreases linearly.  

If carried out properly, mathematical analysis of data is an important and 

essential step in scientific investigations. The commonly repeated mistake that 

population was or is increasing exponentially is based on neglecting the analysis of 
data. When, properly analysed, data demonstrate that the population was never 

increasing exponentially. The same applies to the historical economic growth 

(Nielsen, 2016a). Modern economic growth can be approximated by using 
exponential function over a certain range of time (Nielsen, 2014) but other 

trajectories might be also possible. The popular habit of describing any type of 

growth as exponential is unjustified because there are many other types of growth. 
Close analysis of data is essential in explaining the mechanism of growth, 

because the data can help to eliminate various irrelevant mechanisms.  For 

instance, the past economic growth and the growth of human population can be 

described using the simple first-order hyperbolic distributions (Nielsen, 2014; von 
Foerster, Mora, & Amiot, 1960). Such information is already a significant step 

forward because rather than looking for a variety of possible mechanisms of 

growth we can now focus on trying to explain why the historical growth was 
hyperbolic.  

We might also take an alternative approach based on the examination of the 

empirical growth rates. The growth rate for the hyperbolic growth is directly 

proportional to the size of the growing entity. So now we do not even have to ask 
why the growth was hyperbolic, the question, which might be difficult to answer 

because hyperbolic distributions appear to be complicated, but to ask why the 

growth rate is directly proportional to the size of the growing entity, which might 
be easier to answer because linear trends are much easier to understand than the 

more complicated hyperbolic trends.  

The direct analysis of S or ( )F S is simple and does not require any further 

explanation. We shall now concentrate on the analysis of the growth rate, R , of the 

growing entity S or the growth rates of the appropriately-defined functions ( )F S , 

such as ( ) lnF S S . The general concept is to reproduce the growth rates using 

the simplest mathematical distributions. We shall show how such simple 

mathematical representations of growth rates can be converted to mathematical 
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expressions describing the growth of a studied process. The derived mathematical 

formulae might not appear simple but they will be based on the simplest starting 

steps. Mathematical representation of data based on such procedures can then be 
used not only to describe the existing data but also to predict growth.  

No prediction is absolutely reliable even if we know the mechanism of growth 

because the mechanism of growth can change. We can only predict the future on 

the assumption that the mechanism will remain unchanged and that the past pattern 
will be reflected in the future growth, but even then we might have more than one 

future pathway. Nevertheless, such predictions, based on rigorous analysis of data, 

could be useful.  For instance, if we can demonstrate a strong probability of an 
exponential economic growth we could take such a prediction as a warning sign 

because exponential growth increases indefinitely and at a certain time it becomes 

unsustainable. Other types of growth might be also unsustainable and it is useful to 

explore such possibilities. 

 

2. Mathematical methods 
Growth rate is defined by the following equation: 

 

1 1dS S
R

S dt S t


 


        (1) 

 

where ( )S t is the size of the growing entity and t is the time.  

More explicitly, for the direct calculations from data: 
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.        (2) 

The size S can represent, for instance, the Gross Domestic Product (GDP) or 

the size of the population. However, the described mathematical methods have a 
general application. In principle, they can be used for any type of growth. If we 

have a sufficiently large number of data, we can use them to determine the 

empirical growth rate, analyse it mathematically, use its mathematical description 

to fit the data and to predict growth. 
If analysis of data is carried out by using an appropriately-defined distribution

( )F S , rather than S, then the starting point is to calculate the growth rate of ( )F S

: 

 

1 ( ) 1 ( )

( ) ( )

dF S F S
R

F S dt F S t


 


.      (3) 

 

The simplest way to calculate the growth rate of S  is directly from data using 

the eqn (2). However, such calculations are sensitive to local gradients, /S t  , 

and consequently, they usually produce strongly fluctuating growth rates, which 

obscure the trend. A far better way is to calculate the growth rate by using the 

polynomially-interpolated gradient /S t  . This method allows for a cleaner 

representation of the growth rate.  
It should be noted that strong fluctuations in the growth rate have no impact on 

the size of the growing entity, calculated or determined empirically (Nielsen, 

2016b). Likewise, even sizable variations or oscillations in the growth rate usually 
have negligible effect. The trajectory of the growing entity is not determined by 
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such variations but by the general trend of the corresponding growth rate. As an 

example, we are showing the data for Sweden and the results of their analysis using 

a constant rate of natural increase (RNI).  
The top section of Figure 1 shows birth and death rates as well as the rate of 

natural increase, which in this case is approximately the same as the growth rate 

because the migration rates were small. The lower part of this figure shows the 

corresponding growth of the population. It is clear that even large fluctuations in 
the RNI or in the growth rate are not reflected in the growth of the population. 

These fluctuations can be neglected. 

Furthermore, as shown in the top section of Figure 1, the RNI (or the growth 
rate) does not fluctuate around a constant value, and yet, a constant value, which 

generates exponential growth, reproduces the data reasonably well. The clear 

disagreement between the calculated exponential growth and the data is towards 

the end of the displayed distribution when the RNI (or the growth rate) departs far 
from the assumed constant value. More data would have to be included to study 

this feature. It could be just a temporary deviation but it could be also a diversion 

to a new trend.  

 
Figure 1. Demographic information for Sweden (Statistics Sweden, 1999). 
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Our aim was not to analyse the data for Sweden but to demonstrate that even 

simple approximations of the growth rate trajectories can be successful in 

describing the growth of the population or the growth of any other growing entity. 
Consequently, we can neglect not only the fluctuations of the growth rate but also 

its periodic, longer-term, variations and we can use only the general trends of the 

growth rates to study growth trajectories and to calculate future trends. 

Growth rate can be presented as a function of time or as a function of the size of 
the growing entity. We shall now discuss these two possibilities.  

If the empirically-determined growth rate can be described by a certain time-

dependent function ( )f t , i.e. if 

 

1
( )

dS
f t

S dt
 ,        (4) 

 

then to find the mathematical representation of data we have to solve the following 
differential equation:  

( )
dS

f t dt
S

 .         (5) 

 
Its solution is 

 

( ) exp ( )S t f t dt 
   .        (6) 

 

If  
 

( )f t r const  ,         (7) 

 

the solution of the eqn (4) is given by the exponential function, 

 

( ) rtS t Ce ,         (8) 

 
Where C is related to the constant of the integration. The eqn (8) describes 

exponential increase, if 0r  or decrease if 0r  .  

If the empirically-determined growth rate can be represented by a straight line, 

i.e. if 

 

( )f t a bt  ,         (9) 

 
Where a and b are constants, then 

 
2( ) exp 0.5S t C at bt                     (10) 

 

In this case, the gradient of ( )S t is 

 

2( )
( )exp 0.5

dS t
C a bt at bt

dt
     .                (11) 
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Depending on the parameters a and b, the distribution given by the eqn (10) 

may increase indefinitely or it may reach a maximum at /t a b  . 

If the empirically-determined growth rate can be described by a certain size-

dependent function ( )f S , i.e. if 

 

1
( )

dS
f S

S dt
 .                   (12) 

 

We can express this equation as 

 

( )

dS
dt

S f S



.                   (13) 

 

We now have a mathematically more complicated problem, because there is no 
single prescription for the solution of such differential equations. 

In the simplest case when ( )f S r const  the solution is again represented by 

an exponential function. If we take the next least complicated step and assume that 

( )f S is represented by a straight line, i.e. if 

 

( )f S a bS  ,                   (14) 

 

then we have the following differential equation: 
 

 
dS

dt
S a bS




.                   (15) 

 

To find how to integrate the left-hand side of this equation let us consider a 

general case: 

( )( )

dx

a bx c ex 
 ,                   (16) 

 
Where a, b, c and e are constants. 

To integrate this fraction we split it into two fractions: 

 

1

( )( ) ( ) ( )

A B

a bx c ex a bx c ex
 

   
,                (17) 

 

Where A and B are certain constants, which we now have to determine. 
The right-hand side of the eqn (17) can be expressed as 

 

( ) ( )

( ) ( ) ( )( )

A B c ex A a bx B

a bx c ex a bx c ex

  
 

   
.               (18) 

By comparing the eqns (17) and (18) we can see that 

 

( ) ( ) 1c ex A a bx B    ,                  (19) 

 
which gives us a set of two equations: 
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1cA aB  ,                  (20a) 

0eA bB  .                  (20b) 

 

Their solution is 

 

b
A 


,                  (21a) 

e
B  


,                  (21b) 

 

Where 

 

cb ae   .                   (22) 

 
So now, the eqn (17) can be replaced by 

 

1 1 1

( )( ) ( ) ( )

b e

a bx c ex a bx c ex
 

     
.               (23) 

 

The integration of the left-hand side of this equation is replaced by the 
integration of two simpler fractions. Their integration can be done by substitutions. 

Thus, for instance if we use u a bx  we get 

 

1 1 1 1
ln ln( )

du
dx u a bx

a bx b u b b
   

  .               (24) 

 
Consequently, 

 

1
ln

( )( )

dx a bx

a bx c ex c ex




    .                 (25) 

 

We have derived a useful general formula of integration. In particular, we can see 

now that 
 

1
ln

( )

dx a bx

x a bx a x


 

 ,                 (26) 

 

because 0c  , 1e  and consequently a   . 

We are now ready to solve the eqn (15). The integration of both sides of the 

equation 

 

 
dS

dt
S a bS


                    (27) 

 

gives 
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1
ln

a bS
t C

a S


   ,                  (28) 

 

where C is the constant of integration. 
 

Simple arithmetical manipulations lead to the following solution of the eqn 

(15): 
 

1

at b
S Ce

a



 
  
 

.                   (29) 

 

The constant C can be determined by normalising calculated S to data at a 

certain time 0t , 

 

0

0

1 atb
C e

S a

 
  
 

,                   (30) 

where 0S is the empirical size of the growing entity (e.g. the GDP) at a selected 

time 0t . 

If a bS r const   , i.e. if the growth rate is constant, the eqn (29) gives 

exponential growth. 

If a bS const  we have two possibilities: the growth rate represented by

a bS can either increase or decrease with the size of the growing entity: 

 

1 dS
a bS

S dt
  .                  (31) 

 

If 0b  , the eqn (29) represents the logistic-type of growth. The characteristic 

signature of this type of growth is its linearly decreasing growth rate. The 
corresponding size S of the growing entity approaches asymptotically a maximum 

value of 

 

a
S

b
  .                    (32) 

 
The eqn (32) defines the mathematical limit to growth, which is often described 

as the carrying capacity but it is only the carrying capacity if parameters a and b 

are clearly and convincingly related to the well-defined and well-explored 

ecological limits; otherwise, the calculated limit S is just the calculated limit to 

growth, which may or may not represent the carrying capacity.  

For instance, if we consider the growth of the GDP and if we determine 

empirically the parameters a and b using the empirical values of the growth rate, it 

would be incorrect to claim that the calculated S represents the empirically 

determined carryingcapacity because the past economic growth might be following 
an unsafe trajectory and the economic collapse might happen even before reaching 

the calculated limit S . For this reason, describing the logistic limit as the carrying 
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capacity may be misleading and it would be perhaps better to avoid such 

descriptions. 

The same comment applies also the calculated maximum when using the eqn 
(10). The calculated maximum, even if based on using the empirically-determined 

parameters a and b, is just the calculated maximum. It also does not describe the 

carrying capacity. With limited resources the growth might be terminated even 

before reaching the maximum calculated using the empirically-determined 
parameters. 

If 0b  then, according to the eqn (29), the growth approaches singularity 

(escapes to infinity) at the time 

1
lns

b
t t

a aC
   .                   (33) 

 

This type of growth resembles the hyperbolic growth, which characterises the 

historical economic growth and the growth of human population (Nielsen, 2014, 

2015a; von Foerster, Mora, &Amiot, 1960). Hyperbolic growth (or to be more 
precise, the first-order hyperbolic growth) is given by the following simple 

equation: 

 
1( )S C bt   ,                   (34) 

 

where 0b  .  

 

Hyperbolic growth escapes to infinity when  

s

C
t t

b
  .                   (35) 

 

Hyperbolic distribution is a solution of the following differential equation: 

 

1 dS
bS

S dt
 .                               (36) 

 

If we compare this equation with the eqn (31) we can see that they are similar. 

In both cases, for 0b  , growth rate increases linearly with the size of the growing 

entity. However, while for the hyperbolic growth [eqn (36) with 0b  ] the growth 

rate is directly proportional to S, for the growth described by the eqn (31) the 

linearly-increasing growth rate is displaced by the parameter a. It is a small 

difference but with significant consequences and it is important to understand the 
similarities and differences between these two different patterns of growth.  

Their corresponding solutions given by eqns (29) and (34), for 0b  , are 

presented in Figure 2. Their reciprocal values, 1/ ( )S t , are shown in Figure 3. The 

distribution described by the differential equation (31) and by its solution (29) for 

0b   is not hyperbolic but it escapes to infinity at a fixed time [see eqn (33)]. We 

could, therefore, call it a pseudo-hyperbolic distribution. 
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Figure 2.  Comparing hyperbolic distribution given by the eqn (34) with the pseudo-

hyperbolic distribution given by the eqn (29) for 0b  . In this example, they escape to 

infinity at the same time. 

 

 
Figure 3. Comparing the reciprocal values, 1/ ( )S t , of the hyperbolic distribution given 

by the eqn (34) and of the pseudo-hyperbolic distribution given by the eqn (29) for 0b  . 

In this example, they cross the horizontal axis at the same time. The limit for the reciprocal 

values of the pseudo-hyperbolic distribution is /b a . 

 

The curious difference between the respective differential equations, (31) and 

(36), is that the eqn (31) cannot be treated as the generalisation of the eqn (36). The 
two equations have to be solved independently. The solution to the eqn (31) cannot 

be used to derive the solution to the eqn (36). While solving the eqn (31) is 

difficult, solving the eqn (36) is simple. The solution can be obtained by 

substitution 
1S Z  .  

Both distributions, the hyperbolic distribution described by the eqn (34) and the 

pseudo-hyperbolic distribution described by the eqn (29), escape to infinity at a 
certain fixed time but the essential difference is in the behaviour of their reciprocal 

values, 1/ S  (see Figure 3). For the hyperbolic growth, the reciprocal values 

decrease linearly with time. For the pseudo-hyperbolic growth, given by the eqn 

(29), they decrease non-linearly approaching the limit of /b a .  

In the example shown in Figures 2 and 3, parameters for the pseudo-hyperbolic 

growth are:
24.475 10a   ,

32.155 10b   and  
381.437 10C   . Parameters 

for the hyperbolic growth are 
32.155 10b   and 

04.376 10C   . Singularity is 

at 2031.35t  .  
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A summary of the discussed differential equations, their solutions and their 

properties is presented in Table 1. 

 
Table 1. Summary of the discussed differential equations, their solutions and properties 

Differential 

Equation 

Solution Comments 

1 dS
r

S dt
  

rtS Ce  Exponential increase (if 0r  ) or 

decrease (if 0r  ) 

1
( )

dS
f t

S dt
  exp ( )S C f t dt 

   
 

1 dS
a bt

S dt
   

2exp 0.5S C at bt     
For a suitable combination of 

parameters a and b, this distribution 

will reach a maximum at /t a b   

1 dS
bS

S dt
  

1( )S C bt    If 0b  , hyperbolic growth. 

Singularity at /st C b . Reciprocal 

values, 1/ S , decrease linearly with 

time.  

1 dS
a bS

S dt
   

1

at b
S Ce

a



 
  
 

 
If 0b  : pseudo-hyperbolic growth. 

Singularity at 
1

lns

b
t

a aC
  . 

Reciprocal values decrease non-

linearly to /b a  when t t . 

If 0b  : logistic growth. S increases 

asymptotically to /a b when t t

. 

 

Fitting data and projecting growth can be also carried out by replacing the 

growth rate of S by the growth rate of any, suitably-defined, distribution ( )F S . The 

aim here is again to look for the simplest mathematical descriptions of growth 

rates. If the mathematical description of the growth rate of S is complicated, it 

might be possible that the mathematical description of the growth rate of ( )F S  

could be simpler. Analysis of data can be simplified by looking for their alternative 
representations and the general idea is to try to reduce the analysis, if possible, to 

the simplest mathematical expression – the straight line. 

Thus, for instance, if lnF S , where S represents the empirically-determined 

size of the growing entity, and if 

1 dF
a bt

F dt
  ,                              (37) 

 

then 

 
2exp( 0.5 )F C at bt  ,                            (38) 

 

and 
2exp exp( 0.5 )S C at bt    .                 (39) 

 

If lnF S and if 
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1 dF
a bF

F dt
  ,                                    (40) 

 
then 

 
1

at b
F Ce

a



 
  
 

,                  (41) 

 

and 

 
1

exp at b
S Ce

a




  

   
   

.                  (42) 

 
Mathematical representations of S given by the eqns (39) and (42) are not 

simple but they are acceptable because they are based on reducing mathematical 

analysis of data to the simplest representation given by a straight line for the 
growth rate of F.  

We can also extend this alternative representations by replacing the growth 

rateR by a suitably defined function ( )F R . If the mathematical description of the 

growth rate of S turns out to be complicated it might be possible that a suitably-

defined function ( )F R  could simplify the analysis. 

Thus for instance, visual examination of the empirical growth rate of S might 
suggest that it depends hyperbolically on time. We might try to fit hyperbolic 

distribution to the empirically-determined growth rate but it is also a good idea to 

check whether the distribution is indeed hyperbolic by examining the reciprocal 

values of R because if 1/ R should follow a straight line. So, if 

 

1
( )F R a bt

R
                     (43) 

 

then 

 

1 1dS
R

S dt a bt
 


                  (44) 

 

Hyperbolic distribution is not as simple as a straight line but it can be reduced to 
a straight line, which is easier to accept and understand. Such an exercise increases 

confidence that the distribution is indeed hyperbolic or at least that it can be well 

approximated by a hyperbolic distribution.  
The differential equation (44) can be presented as 

 

dS dt

S a bt



,                  (45) 

 

which, when integrated, gives  
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1
ln ln( )S a bt C

b
   .                 (46) 

 

Consequently, 
 

1/( ) bS C a bt                    (47) 

 

because exp(ln )z z . The constants C are different in these last two equations 

but it does not matter because they are just the normalisation constants, which have 
to be determined by comparing calculated S with its corresponding empirical value. 

The eqn (47) is not simple but it has been obtained by reducing mathematical 

analysis to the simplest mathematical expression given by the eqn (43), which 

identifies hyperbolic distribution of R. The fundamental starting step is simple and 
the derived expression for S, even if complicated, can be accepted with a high 

degree of confidence.  

If a visual examination of the empirical growth rate R suggests that it follows an 
exponential distribution we can try to fit an exponential function to R or to display 

it using the semilogarithmic scales of reference. If 

 

ln R a bt  ,                  (48) 

 

then 

 

1
exp( )

dS
a bt

S dt
                   (49) 

 
and the solution to this equation is  

 

exp
a

bte
S C e

b

 
  

 
                             (50) 

 

Again, it is not a simple description of S but this complicated expression has 

been derived using the simplest representation of R via ln R . 
All mathematical descriptions of S presented here [see eqns (10), (29), (34), 

(39), (42), (47) and (50)] are not simple but all of them were derived using the 
simplest mathematical representations of related quantities. It is easy to construct 

complicated but dubious formulae but even complicated formulae are acceptable if 

they are derived using simple and acceptable assumptions.  

 

3. Example 
Application of the discussed methods is illustrated in Figures 3 and 4 using the 

world GDP data (World Bank, 2015). In Figure 4 we present two sets of 

calculations of the growth rate of the GDP: (1) the growth rate calculated directly 
from data and (2) the growth rate calculated using the interpolated gradient. As 

expected, the growth rate calculated directly from data is characterised by strong 

fluctuations. Such calculations do not help in unravelling the prevailing trend. 

However, the trend becomes clear if we calculate the growth rate using the 
interpolated gradient. 
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Figure 4.  The growth rate, R, describing global economic growth between 1960 and 2014, 

calculated directly from data, R (Direct), and by using the interpolated gradient, R 

(Refined). Calculations were carried out using the GDP data of the World Bank (2015). 

 

 
Figure 5. Fitted GDP data and the projected growth using linear approximation for the 

growth rate between 1980 and 2014 and a constant growth rate of 2.5% per year. 
Calculations were supported by the GDP data of the World Bank (2015). 

 

The growth rate calculated using the interpolated gradient follows the reciprocal 

of a familiar mathematical distribution (Nielsen, 2011) labelled here as the best fit, 
which will be discussed in a separate publication. The growth rate of the world 

GDP approaches asymptotically a constant value of 2.5%, which is already close to 

the value of 2.7% in 2014. The world economic growth increases already 

approximately exponentially. 
Simple calculations presented in Figure 5 are based on two independent 

assumptions: (1) that the growth rate will remain constant at its approximately 

asymptotic value of 2.5% or (2) that it will be decreasing linearly with time. The 
constant growth rate generates exponential growth. The linear approximation of the 

time-dependent growth rate was obtained by fitting the empirical growth rate 

between 1980 and 2014. The fit is described by the following parameters: 
13.895 10a   and

41.805 10b    . If the growth rate is going to follow this 

slowly-decreasing trajectory, the economic growth will reach a maximum. 
However, if it is going to remain constant at its asymptotic value, the world GDP is 

going to continue to increase exponentially.  

 

4. Summary and conclusions 
We have discussed mathematical methods of growth rate analysis and of 

predicting growth. In their simplest applications, the growth rate is presented either 
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as a function of time or as a function of the size of the growing entity. The aim is 

then to find the simplest mathematical description of the growth rate and to use it 

to calculate growth trajectories. In the extended application we can define a 

quantity ( )F S  which depends on the size of the growing entity and we can apply 

the same methods by examining the time dependence or the size dependence of F. 

We can also look for simple trajectories of ( )F R , where ( )F R is a suitably 

defined function of the growth rate R. 

The described methods are an extension to the usual analysis of the size Sof the 

growing entity or of the analysis of the appropriately defined distributions 

depending on S, such as ( ) 1/F S S or ( ) ln( )F S S . These methods are 

illustrated using the world GDP data but they can have more general applications.  
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