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Abstract. This paper investigates the relation between diffusion of COVID-19 and wind 

resources to provide insights on how sustainable policies for energy production can 

improve ecosystem, reduce environmental pollution, improve public health and prevent 

future epidemics. Results reveal that cities in regions with high wind energy production 

have a lower number of infected individuals of COVID-19, whereas polluted cities with 

less clean production and low production of energy from sustainable resources (i.e., wind) 

have higher numbers of infected individuals and deaths. These findings underscore the 

importance of sustainable energy production to support an ecosystem that protects human 

health and reduces the associated social welfare loss because of the COVID-19 pandemic 

and future similar infectious diseases. 
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1. Introduction  
he contemporary environmental and sustainability debate has new or 

relatively unexplored topics that continually emerge in science. This 

study provides an investigation for the exploration of causes, 

consequences and sustainable policy responses linked to diffusion of 

Coronavirus disease 2019 in a context of environmental and sustainability 

science. 

The Coronavirus disease 2019 (COVID-19) produces minor symptoms in 

most people, but is also the cause of severe respiratory disorders and death 

of many individuals worldwide (Ogen, 2020; Dantas et al., 2020). The 

Coronavirus infection, started in China in 2019, is an on-going global health 

problem that is generating a socioeconomic crisis and negative world 

economic outlook projections (Saadat et al., 2020). Manifold studies suggest 

a possible relation between air pollution and particulate compounds 

emissions and diffusion of COVID-19 infection (Fattorini & Regoli, 2020; 

Frontera et al., 2020). Scholars also state that high level of air pollution can 

increase viral infectivity and lethality of COVID-19 infection (Contini & 
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Costabile, 2020). Conticini et al. (2020) argue that population living in 

regions with high levels of particulate compounds emissions has also a 

high probability to develop respiratory disorders because of infective 

agents. In fact, the highest level of COVID-19 infection is in the USA, Spain, 

Italy, UK, Russia, China, Brazil, France, etc. that are countries having in 

some regions a very high level of air pollution (Coccia, 2020; Frontera et al, 

2020). Studies confirm correlations between exposure to air pollution, 

diffusion and virulence of the SARS-CoV-2 within regions with population 

having a high incidence of respiratory disorders, such as chronic 

obstructive pulmonary disease (COPD) and Lung Cancer (Fattorini & 

Regoli, 2020; Coccia, 2014, 2015). Lewtas (2007) shows that exposures to 

combustion emissions and ambient fine particulate air pollution are 

associated with genetic damages. Long-term epidemiologic studies report 

an increased risk of all causes of mortality, cardiopulmonary mortality, and 

lung cancer mortality associated with increasing exposures to air pollution 

(cf., Coccia & Wang, 2015). Ogen (2020, p.4) finds that high NO2 

concentrations associated with downwards airflows cause of NO2 buildup 

close to the surface. This geographical aspect of regions, associated with 

specific atmospheric conditions of low wind, prevents the dispersion of air 

pollutants, which are one of the factors of a high incidence of respiratory 

disorders and inflammation in population of some European regions, such 

as Norther Italy. In short, the exposure of air pollution, associated with 

Coronavirus infection, can be a driver of high rate of mortality in Italy 

(14.06%), Spain (11.90%), UK (14.37%), Belgium (16.40%), France (15.32%), 

etc. (cf., Center for System Science and Engineering at Johns Hopkins, 

2020). The study by van Doremalen et al. (2020) revels that in China viral 

particles of SARS-CoV-2 may be suspended in the air for various minutes 

and this result can explain the high total number of infected people and 

deaths of COVID-19 infection in the USA, Spain, Russia, France, Italy, 

Brazil, Turkey, Iran, etc. (cf., Center for System Science and Engineering at 

Johns Hopkins, 2020). In general, these studies suggest the hypothesis that 

the atmosphere having a high level of air pollutant, associated with certain 

climatological factors, may support a longer permanence of viral particles 

in the air, fostering a diffusion of COVID-19 infection based on mechanisms 

of air pollution-to-human transmission in addition to human-to-human 

transmission (Frontera et al., 2020). In order to extend the investigation of 

these critical aspects in the development of COVID-19 outbreaks 

worldwide, in the presence of polluting industrialization, the goal of this 

study is to analyze the relation between infected people, air pollution, wind 

speed and inter-related renewable wind energy production that can explain 

some critical relationships determining the diffusion of COVID-19 and 

negative effect in environment and public health. This study has the 

potential to support long-run sustainable policy directed to foster a cleaner 

production for reducing and/or preventing the diffusion of future 

epidemics similar to COVID-19 infection. 
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2. Methods and research techniques 
2.1. Data, sources and research setting 
This study focuses on fifty-five (N=55) cities that are provincial capitals 

in Italy, one of the countries with the highest number of deaths of COVID-

19 infection: more than 31,360 units at 15 May, 2020 (cf., Lab24, 2020). 

Epidemiological data of COVID-19 infection are from Ministero della 

Salute (2020); data of polluting industrialization, air pollution and 

particulate compounds emissions are from Regional Agencies for 

Environmental Protection in Italy (cf., Legambiente, 2019); climatological 

information are based on meteorological stations in Italian provinces (il 

Meteo, 2020); data of the density of population are from the Italian National 

Institute of Statistics (ISTAT, 2020) and finally, data concerning the 

production of wind energy per Italian regions are from Italian 

Transmission Operator called Terna (2020).  

 

2.2. Measurements 
 Polluting industrialization and particulate compounds emissions. Total 

days exceeding the limits set for PM10  or for ozone in 2018 per Italian 

provincial capitals. Days of air pollution and particulate compounds 

emissions are a main factor that affects environment and public health. 

Moreover, 2018 as baseline year for air pollution and particulate 

compounds emissions data, it separates out the effects of COVID-19 

infection. 

 Diffusion of COVID-19 infection. Number of infected individuals on 

March-April, 2020  

 Climatological information. Average wind speed km/h on February-

March 2020  

 Indicators of interpersonal contact rates. Population density of cities 

(individual / km2) in 2019   

 Production of renewable wind energy. Power in MW of overall wind 

farms in all regions at January 2020 

 

2.3. Primary data analysis and statistics 
Descriptive statistics is performed categorizing Italian provincial capitals 

in groups, considering: 

 Renewable wind energy production  

 cities with high wind energy production (seven regions in Italy have 

94% of national production of wing energy)  

 cities with low wind energy production (regions that have 6% of 

national production of wing energy) 

 Polluting industrialization with and particulate compounds emissions 

 Cities with high polluting industrialization (> 100 days per year 

exceeding the limits set for PM10 or for ozone) 

 Cities with low polluting industrialization ( 100 days per year 

exceeding the limits set for PM10 or for ozone) 
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Correlation and regression analyses verifies relationships between 

variables understudy. Regression analysis considers the number of infected 

people across Italian provincial capitals (variable y) as a linear function of 

the explanatory variable of total days exceeding the limits set for PM10   

(variable x).  

The specification of linear relationship is a log-log model: 

 

log yt =  +  log xt-1 + u        (1) 

 
 is a constant; = coefficient of regression; u = error term  

An alternative model [1] applies as explanatory variable the density of 

population per km2 considering groups of cities with high or low level of 

polluting industrialization and particulate compounds emissions.  

The estimation of equation [1] is also performed using a categorization 

of cities according to level of polluting industrialization and their location 

in regions with high and low intensity of wind energy production. 

Ordinary Least Squares (OLS) method is applied for estimating the 

unknown parameters of linear models [1]. Statistical analyses are 

performed with the Statistics Software SPSS version 24.  

 

3. Findings 
The wind energy production in Italy is in Table 1 per regions.  

 
Table 1. Wind energy production in Italy per regions, January 2020 

Italian Regions Number wind farms Power [MW] 

Abruzzo 47 264.2 

Basilicata 1413 1300.1 

Calabria 418 1125.8 

Campania 619 1734.6 

Emilia Romagna 72 44.9 

Friuli Venezia Giulia 5 0.0 

Lazio 69 70.9 

Liguria 33 56.8 

Lombardia 10 0.0 

Marche 51 19.2 

Molise 79 375.9 

Piemonte 18 23.8 

Puglia 1176 2570.1 

Sardegna 595 1105.3 

Sicilia 884 1904.1 

Toscana 126 143.0 

Trentino Alto Adige 10 0.4 

Umbria 25 2.1 

Valle d'Aosta 5 2.6 

Veneto 18 13.4 
Source: Terna (2020). 

 
Table 1 shows that seven regions in Italy (Molise, Puglia, Calabria, 

Basilicata, Campania, Sicilia and Sardegna) have the 94% of total wind 
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energy production. These regions have at least over 1 GW of power, with 

the leadership of Puglia region (South-East Italy) having 2.5 GW. Italy had 

in January 2020 about 5,645 wind farms with almost 7,000 wind turbines of 

various power sizes. In particular, above 10 MW of power there are 313 

plants for a total power of just over 9 GW (i.e., 9.07 GW). The most relevant 

power class ranges from 20 to 200 kW, with 3,956 systems having a total 

power of approximately 234 MW. As just mentioned, Puglia has the largest 

share of wind power installed in Italy: 24.8% of the total with 92 plants 

above 10 MW of power. Results of Italian province capitals, categorized in 

two groups belonging to regions with high or low wind energy production, 

suggest that cities in regions with a high production of wind energy (94% of 

total) have a very low number of infected individuals with COVID-19 

infection (in March and April 2020), whereas cities located in regions with a 

low intensity of wind energy production (6% of total) have a very high 

number of infected individuals (Table 2). 

 
Table 2. Descriptive statistics of Italian province capitals according to intensity of wind 

energy production 

Cities in regions with 94% 

of wind energy production  

N=5 

Days exceeding 

limits set for 

PM10 or ozone 

2018 

Infected 

Individuals 

17th March 

2020 

Infected 

Individuals 

7th April 

2020 

Infected 

Individuals  

27th April 

2020 

Density 

inhabitants/km2 

2019 

Wind 

km/h 

Feb-Mar 

2020 

Mean 48.00 59.80 505.60 708.20 2129.00 14.60 

Std. Deviation 30.27 90.84 646.12 949.19 3384.10 5.45 

Cities in regions with 6% 

of wind energy production 

N=50   

   

 

Mean 79.44 475.58 2119.68 3067.67 1385.76 8.10 

Std. Deviation 41.70 731.11 2450.71 3406.67 1489.31 3.08 

 
Table 2 also shows that cities in regions with low production of wind 

energy (6% of total) have a higher level of polluting industrialization than 

cities with a high production of wind energy (about 70 polluted days vs. 48 

polluted days exceeding PM10 or ozone per year). This preliminary result 

suggests that regions with a high intensity of wind-based renewable energy 

and low polluting industrialization have also a low diffusion of COVID-19 

infection in society. In order to confirm this result, table 3 considers 

polluting industrialization of cities: especially, cities with high polluting 

industrialization and particulate compounds emissions (>100 days 

exceeding limits set for PM10 or ozone per year) and low production of 

wind energy, they have a very high level of infected individuals in March 

and April 2020, in an environment with high average density of population 

and low average intensity of wind speed.  
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Table 3. Descriptive statistics of Italian provincial capitals according to polluting 

industrialization and particulate compounds emissions 

Cities with high polluting 

industrialization:  

>100days exceeding limits set for 

PM10 

 N=20 

Days exceeding 

limits set for 

PM10 or ozone 

2018 

Infected 

Individuals 

17th March 

2020 

Infected 

Individuals 

7th April 

2020 

Infected 

Individuals  

27th April 

2020 

Density 

inhabitants/km2 

2019 

Wind 

km/h 

Feb-Mar 

2020 

Mean 125.25 881.70 3650.00 4838.05 1981.40 7.67 

Std. Deviation 13.40 1010.97 3238.82 4549.41 1988.67 2.86 

Cities with low polluting 

industrialization: 

<100days exceeding limits set for 

PM10 N=35   

   

 

Mean 48.77 184.11 1014.63 1637.21 1151.57 9.28 

Std. Deviation 21.37 202.76 768.91 1292.26 1466.28 4.15 

 
Table 4. Correlation 

 

Cities in regions with 94% 

of  wind energy production  

Cities in regions with 6% 

of  wind energy production 

 

Log Days exceeding 

limits set for PM10 or 

ozone 

2018  

Log Days exceeding 

limits set for PM10 or 

ozone 

2018 

Log Infected Individuals 

17th  March, 2020    

Pearson Correlation .81  .69** 

    

Log Infected individuals  

7th  April, 2020    

Pearson Correlation .74  .55** 

    

Log Infected individuals 

27th  April, 2020    

Pearson Correlation .69  .36** 
Note: **. Correlation is significant at the 0.01 level (2-tailed)  

 

Table 4 shows that cities of regions with less than 6% of wind energy 

production, they have a high positive correlation between polluting 

industrialization and infected individuals of COVID-19 infection at 17th 

March (r=.69, p-value<.01), 7th April (r=.55, p-value<.01) and 27th April, 2020 

(r=.36, p-value<.01). In regions with a high intensity of wind production, 

results are not significant.  
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Table 5. Parametric estimates of the relationship of Log Infected individuals on Log 

polluting industrialization considering the groups of cities in regions with high or low 

production of wind energy  

Note: Explanatory variable: log Days exceeding limits set for PM10 or ozone 2018; dependent variable log 

infected individuals. *** p-value<0.001 

 

Table 5 suggests that polluting industrialization, in areas with low 

production of wind energy, explains the number of infected individuals of 

COVID-19. In particular,  

o cities in regions with 94% of wind energy production have not 

significant results because of low number of cases in sample 

o instead, in cities of regions with 6% of wind energy production, an 

increase of 1% of polluting industrialization, measured with days 

exceeding limits set for PM10, it increases the expected number of infected 

by about 0.92% (P<.001). 

Figure 1 shows a visual representation of regression lines: cities having a 

higher production of renewable energy tend to have a low number of total 

infected individuals driven by polluting industrialization.  

 

 
Figure 1. Regression lines of Log Infected Individuals on Log polluting industrialization 

according to production of wind energy of cities. 
Note: This result suggests that diffusion of COVID-19 infection increases with polluting industrialization in 

regions having low production of wind energy, i.e., with a less sustainable production. 

 

Cities in regions with 94% of  

wind energy production  

Cities in regions with 6% of  

wind energy production 

DEPENDENT 

VARİABLE 

Explanatory variable: 

Log Days exceeding limits set 

for PM10 or ozone 

2018 DEPENDENT VARİABLE 

Explanatory variable: 

Log Days exceeding limits set 

for PM10 or ozone 

2018 

log infected  

7th April, 2020 
 

log infected  

7th April, 2020 

 

Constant  

(St. Err.) 

.70 

(2.64) 

Constant  

(St. Err.) 

3.39*** 

(.85) 

    

Coefficient  1 

(St. Err.) 

1.34 

(.70) 

Coefficient  1 

(St. Err.) 

.92*** 

(.20) 

    

R2 (St. Err. of 

Estimate) 
.55 (.86) 

R2 (St. Err. of 

Estimate) 

.31 (.82) 

F 3.65 F 21.28*** 
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In order to confirm this findings, table 6 considers cities with a high and 

low polluting industrialization.  

 
Table 6. Parametric estimates of the relationship of Log Infected individuals on Log 

Density inhabitants/km2 2019, considering the groups of cities with high and low polluting 

industrialization  

Note: Explanatory variable: log Density inhabitants/km2  in 2019; dependent variable log infected 

individuals. *** p-value<0.001; ** p-value<0.01; * p-value<0.05. 

 

Table 6 reveal that in cities with low polluting industrialization and low 

particulate compounds emissions, an increase of 1% of the density of 

population, it increases the expected number of infected individuals by 

about 0.25% (P=.042); whereas, in cities with high polluting industrialization, 

an increase of 1% of the density of population, it increases the expected 

number of infected individuals by about 85% (P<.001). Figure 2 shows 

regression lines on 7th April 2020, in the middle phase of COVID-19 

outbreak in Italy: regions with a polluting industrialization generating an 

atmosphere rich of air pollutants that associated with a climate factor of 

low wind speed support a stronger of diffusion of COVID-19 infection.  

 

 
Figure 2. Regression line of Log Infected people on Log population density inhabitants, 

considering the groups of cities with high or low polluting industrialization  
Note: This result reveals that diffusion of COVID-19 is higher in cities with high polluting industrialization 

 

Cities with low polluting 

industrialization  

Cities with high polluting 

industrialization  

DEPENDENT VARİABLE 

Explanatory variable: 

Log Density 

inhabitants/km2 2019 DEPENDENT VARİABLE 

Explanatory variable: 

Log Density 

inhabitants/km2 2019 

log infected  

7th April, 2020 
 

log infected  

7th April, 2020 

 

Constant  

(St. Err.) 

4.976 

(.786) 

Constant  

(St. Err.) 

1.670 

(1.491) 

    

Coefficient  1 

(St. Err.) 

.252* 

(.120) 

Coefficient  1 

(St. Err.) 

.849*** 

(.205) 

    

R2 (St. Err. of Estimate) .119 R2 (St. Err. of Estimate) .488 

F 17.168*** F 4.457* 
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In addition, if we consider regions with high/low air pollution and 

particulate compounds emissions, using arithmetic mean of days exceeding 

limits set for PM10 or ozone of cities, the percentage of infected individuals 

and total deaths, weighted with population of these regions, reveals that 

about 74.50% of infected individuals and about 81% of total death in Italy 

because of COVID-19 infection are in regions with high air pollution and 

polluting industrialization and with low production of the renewable 

energy based on wind resource.  

 

4. Discussion and observations 
This new study finds that geo-environmental factors may have 

accelerated the spread of COVID-19 in northern Italian cities, leading 

to a higher number of infected individuals and deaths. This study 

analyzed data on COVID-19 cases alongside environmental and 

wind energy data. It found that cities with little wind and frequently 

high levels of air pollution — exceeding safe levels of ozone or 

particulate matter — had higher numbers of COVID-19 related 

infected individuals and deaths. These findings suggest that the 

current pandemic of Coronavirus disease and future epidemics 

similar to COVID-19 cannot be solved only with research and 

practice in medicine, immunology and microbiology but also with the 

development of industrial instruments directed to a sustainable and 

cleaner production (Coccia, 2019). These findings here provide 

valuable insight into geo-environmental and industrial factors that 

may accelerate the diffusion of COVID-19 and similar viral agents. 

The main results of the study, based on case study of COVID-19 

outbreak in Italy, are: 

o The diffusion of COVID-19 in Italy has a high association with 

high polluting industrialization in cities 

o Cities having a high production of wind energy, associated 

with low polluting industrialization, have a low diffusion of COVID-

19 infection and a lower number of total deaths.  

Considering the results just mentioned, the question is:  

what is the link between diffusion of COVID-19 infection, polluting 

industrialization and renewable wind energy in specific regions? 

Results suggest that, among Italian provincial capitals, the number 

of infected people is higher in cities with polluting industrialization, 

cities located in hinterland zones (i.e. away from the coast), cities 

having a low average intensity of wind speed and cities with a lower 

temperature. In hinterland cities (mostly those bordering large urban 

conurbations, such as Bergamo, Brescia, Lodi, close to Milan in 

Lombardy region of North West Italy etc.) with a high polluting 

industrialization, coupled with low wind speed and wind energy 
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production, the average number of infected people in April 2020 

more than doubled that of more windy cities with renewable energy 

production. Therefore, cities in regions with a high production of 

wind energy in Italy, they also have a low polluting industrialization, 

low air pollution and particulate compounds emissions., in an 

environment with a high intensity of wind speed that sustains clean 

days from air pollution, particulate compounds emissions that 

current studies suggest the higher diffusion of Coronavirus infection 

(Fattorini & Regoli, 2020). As a matter of fact, cities with high 

polluting industrialization, mainly in Northern Italy (also having a 

low wind speed and as a consequence low wind energy production), 

have a stagnation of air pollution in the atmosphere that can support 

diffusion of COVID-19 infection (Contini & Costabile, 2020; Conticini 

et al., 2020). The implications for a sustainable policy are clear: 

COVID-19 outbreak has low diffusion in regions with low polluting 

industrialization and high production of renewable (wind) energy. 

Northern Italian region covered by the study, as a consequence, in 

future should reduce pollution industrialization and particulate 

compounds emissions, so that the accelerated transmission dynamics 

of COVID-19 viral infectivity are not triggered. 

In order to reinforce these conclusions with a perspective of 

sustainable policies, Xu et al. (2020) found out the effect of moisture 

on explosive growth in fine particulate matter (PM), and propose a 

new approach for the simulation of fine PM growth and dissipation 

in ambient air. In particular, winds significantly aid the dissipation of 

fine PM, and high concentrations of fine PM only persisted for a very 

short time and dissipated after several hours. The role of 

climatological factors, such as wind speed and direction, 

temperature, and humidity are critical for urban ventilation and the 

pollutant concentration in the streets of cities (Yuan et al. 2019). 

Considering the benefit of wind as resource that can reduce air 

pollution and as a consequence viral infectivity with main public 

health benefits, Gu et al. (2020) argue that a strategy to enhance air 

quality in cities is improving urban ventilation: the ability of an 

urban area to dilute pollutants and heat by improving the exchange 

of air between areas within and above the urban canopy. Of course, 

urban ventilation is a function of a manifold urban geometry 

characteristics, e.g., frontal and plan area density, and the aspect 

ratio of urban morphology. Studies show that variations of building 

height have beneficial effects in terms of breathability levels, whereas 

larger aspect ratios of urban canyons can lead to high levels of 

pollutant concentrations inside the streets of cities. Hence, cities 
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located in hinterland zones of the Northern Italian region with low 

wind speed have an urban climatology and aspects of urban and 

regional topography that sustain the stagnation of air pollution that 

can support the spread of viral infectivity in fall and winter season. 

Hence, these regions have to reduce the level of particulate 

compounds emissions applying long-run sustainable polices directed 

to reduce polluting industrialization and support the production of 

renewable energy (Wang & Zhu, 2020). In fact, health and economic 

benefits associated with national and local reduction of air pollution 

are now rarely contested. Cui et al. (2020), based on a study in China, 

show that where reductions in ambient air pollution and particulate 

compounds emissions have avoided more than 2,300 premature 

deaths and more than 15,80 related morbidity cases in 2017, with a 

total of about US$ 318 million in economic benefits. In addition, these 

scholars argue that reduction of PM2.5 concentrations to 15 μg/m3 

would result in reductions of 70% in total PM2.5-related non-

accidental mortality and 95% in total PM2.5-related morbidity, with 

economic benefits of more than US$ 1,289.5 million. In short, 

sustainable policies that reduce air pollution and particulate 

compounds emissions generate significant environmental, public 

health, social and economic benefits. This study suggests that in 

order to prevent epidemics similar to COVID-19 and other infections, 

nations have to apply a sustainable policy directed to reduce air 

pollution that affects public health and amplifies the negative effects 

of airborne viral diseases. In addition, the policy for a sustainable 

development has to consider the urban climatology with the study of 

climatic properties of urban areas (Gu et al., 2020) and support 

renewable energy, such as wind resource, that create the 

environmental conditions for the reduction of air pollution on trans-

regional level (Wang & Zhu, 2020). Moreover, high surveillance and 

proper biosafety procedures in public and private institutes of 

virology that study viruses and new viruses to avoid that may be 

accidentally spread in surrounding environments with damages for 

population and vegetation. In this context, international 

collaboration among scientists is basic to address these risks, support 

decisions of policymakers to prevent future pandemic creating 

potential huge socioeconomic issues worldwide (cf., Coccia & Wang, 

2016; Coccia, 2020a)1. In fact, following the COVID-19 outbreak, The 

Economist Intelligence Unit (EIU) points out that the global economy 
 
1 Socioeconomic shocks can lead to a general increase of prices, high public debts, high 

unemployment, income inequality and as a consequence violent behavior (Coccia, 2016, 

2017, 2017a).   
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may contract of about by 2.2% and Italy by -7% of real GDP growth 

% in 2020 (EIU, 2020). Italy and other advanced countries should 

introduce organizational, product and process innovations to cope 

with future viral threats, such as the expansion of hospital capacity 

and testing capabilities, to reduce diagnostic and health system 

delays also using artificial intelligence, and as a consequence new 

ICT technologies for alleviating and/or eliminating effective 

interactions between infectious and susceptible individuals, and 

finally of course to develop effective vaccines and antivirals that can 

counteract future global public health threat in the presence of new 

epidemics similar to COVID-19 (Chen et al, 2020; Wilder-Smith et al., 

2020; Riou & Althaus, 2020; Yao et al., 2020; cf., Coccia, 2005, 2009, 

2015a, 2017b, 2018, 2019a, 2020b; Coccia & Watts, 2020)2. In short, the 

concentration in specific areas of a combination of climate with low 

wind, a specific urban climatology of hinterland cities, high polluting 

industrialization, aspects of regional topography and physical 

geography sustains, in fall and winter season, the stagnation of air 

pollution and particulate compounds emissions that seems to have 

supported the spread of COVID-19 infection (cf., Contini & 

Costabile, 2020; Conticini et al., 2020; Fattorini & Regoli, 2020). New 

findings here show that geo-environmental factors may have 

accelerated the spread of COVID-19 in northern Italian cities, leading 

to a higher number of infected individuals and deaths.  

 

5. Concluding remarks 
The results here also suggested that, among Italian provincial 

capitals, the number of infected people was higher in cities with >100 

days per year exceeding limits set for PM10 or ozone, cities located in 

hinterland zones (i.e. away from the coast), cities having a low 

average intensity of wind energy production and cities with a lower 

temperature. In hinterland cities (mostly those bordering large urban 

conurbations) with a high number of days exceeding PM10 and 

ozone limits, coupled with low wind speed, the average number of 

infected people in April more than doubled. These findings provide 

valuable insight into geo-environmental and industrial factors that 
 
2  For studies about the interaction between science, technology and innovation, their 

sources, evolution, diffusion and impact on socioeconomic systems, see: Cavallo et al., 

2014; Coccia, 1999, 2001, 2004, 2005, 2005a, b, c, 2006, 2007, 2008, 2009, 2009a,b,c; 2010, 

2010a,b; 2012, 2012a,b; 2013; 2014, 2014a, b, c,d; 2015, 2015a, b; 2016, 2016a; 2017, 2017a, b, 

c, d, e, f, g, 2018, 2018a, b, c, d, e, f, g, h, i; 2019, 2019a, b, c, d, e, f, g, h, i, l, m; Coccia, 2020a, 

b, c, d, e, f, g, h, i, l, m, n, o, p, q; ;Coccia and Bellitto, 2018, Coccia and Cadario, 2018; 

Coccia et al., 2015; Coccia and Finardi, 2012, 2013; Coccia et al., 2012; Coccia and Rolfo, 

2008, 2009, 2010, 2013; Coccia and Wang, 2015, 2016;  Coccia and Watts, 2020.   



Journal of Social and Administrative Sciences 

 M. Coccia, JSAS, 8(2), 2021, p.52-70. 

64 

64 

may accelerate the diffusion of COVID-19 and similar viral agents. In 

this context, a proactive strategy to help cope with future epidemics 

should concentrate on reducing levels of air pollution in hinterland 

and polluted cities. 

However, these conclusions are of course tentative because there 

are several challenges to such studies, particularly in real time 

because the sources can only capture certain aspects of the on-going 

complex relations between polluting industrialization, diffusion of 

viral infectivity and other resources of economic systems. This study 

therefore encourages further investigations on these aspects of the 

diffusion of COVID-19 outbreaks in highly industrialized areas to 

design appropriate sustainable policies that can provide lung-run 

public health measures to reduce air pollution and control the spread 

of infection similar to COVID-19 (Ou et al., 2020). Overall, then, in the 

presence of high polluting industrialization and low renewable 

energy production of regions that can support diffusion of epidemics 

in environment with high level of air pollution and particulate 

compounds emissions, this study has to suggest that a 

comprehensive strategy to prevent future epidemics similar to 

COVID-19 must be designed in terms of sustainability science with a 

high incidence of cleaner production in socioeconomic systems. 
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