Evaluation of agrarian sustainability in Bulgaria

By Hrabrin I. BACHEV† Bozhidar IVANOV b Desislava TOTEVA c & Emilia SOKOLOVA d

Abstract. This article presents a holistic approach for assessing agrarian sustainability in Bulgaria based on its economic, social and ecological aspects on sectoral macro-level. It is based on official statistical and other information as well as on expert evaluation. Our study has found that the Bulgarian agriculture on macro-level has good sustainability. Some of the sustainability aspects have higher levels such as the economic aspect, while others like social and environmental aspects are inferior. Study results could help in focusing the political efforts, so that the agrarian sustainability, in its social and ecological aspect, could be increased. However, a further research is needed to evaluate the level of sustainability at micro-level, so that the major issues and problem areas are addressed accordingly.

Keywords. Agrarian sustainability, Sustainability indicators, Ecological aspects, Bulgarian agriculture.

JEL. Q10, Q56, R33.

1. Introduction

In the world literature, the question of assessing agrarian sustainability is among the most discussed by scientists, policy makers, farmers and stakeholders (Andreoli & Tellarini, 2000; Bachev, 2005; Bastianoni et al., 2001; FAO, 2013; Häni et al., 2006; Sauvenier et al., 2005; OECD, 2001). The agrarian sustainability has usually been assessed at national or international level (FAO, 2013; OECD, 2001) and usually it is described as ability to satisfy a diverse set of goals through time (Brklacich et al., 1991; Hansen, 1996) or the ability to maintain or improve its functions (Lopez-Ridaura et al., 2002). Often the term sustainability is wrongly associated only with preserving the environment and productivity of the agricultural resources but in our research we consider that agriculture is sustainable if it could maintain its economic, ecological and social functions in a long-term (Bachev, 2010; Bachev et al., 2016).

There is a substantial literature dedicated to analyzing the different aspects of sustainability - economic, social and/or ecological. These three aspects are related to multiple functions of modern agriculture, they are equally important and have to be always accounted for. Agriculture is sustainable if it is: economically viable and efficient; socially responsible regarding farmers, workers, other agents,
communities, consumers and society; and ecologically sustainable (Bachev et al., 2016).

The agrarian sustainability is a topic of great interest in Bulgaria, as well, and it has been subject of studies, mainly focusing on the sustainability of the agrarian holdings and/or specific activities or sectors (Bachev, 2016; Bachev et al., 2016). However, this is the first attempt to make a comprehensive assessment of the sustainability of the Bulgarian agriculture on a sectoral macro-level embracing its three aspects. This article presents a holistic approach for assessing agrarian sustainability based on its economic, social and ecological aspects on sectoral macro-level. It is based on official statistical and other information as well as on expert evaluation. Its aim is to estimate the sustainability index for each one of the tree main aspects and to identify the critical areas that lead to improving the level of agrarian sustainability in Bulgaria.

2. Definition, materials and methods

In the literature and managerial practice there are diverse approaches for defining agrarian sustainability - as an alternative ideology (Edwards et al., 1990; VanLoon et al., 2005); as a new (set of) strategy/ies (Mirovitskaya & Ascher, 2001); as a characteristics of agrarian systems – e.g. “ability to satisfy a diverse set of goals through time” (Brklacich et al., 1991, Hansen, 1996), “ability (potential) of the system to maintain or improve its functions” (Lopez-Ridaura et al., 2002; Lewandowski et al., 1999); as a “process of learning about changes and adapting to these changes” (Raman, 2006), etc.

Definition of agrarian sustainability has to be based on the “literal” meaning of that term and perceived as a system characteristics and “ability to continue through time” (Bachev, 2010). It is a feature of agricultural activity – production associated with cultivation of animals, plants, fungi, and other life forms for human and livestock food, raw materials for processing industries, bioenergy, medicinal and other products and services. Its important feature is the management and utilization of agro-ecosystems of different type (plain, mountainous, riverside, seaside, open-air, closed, etc.), and the “responsibility” for their preservation for future generations.

The characterization of sustainability has to be “system-oriented” while the system is to be clearly specified, including its time and spatial boundaries, components, functions, goals, and importance in the hierarchy. That implies taking into account the diverse socio-economic and environment conservation functions of agrarian sector, the type and efficiency of agrarian organization, and the mutual links (importance, dependency, complementarity) of different governance and organizational structures, and relations with sustainability of households, region, eco-system and the entire sector (industry).

Sustainability has to reflect both the internal capability of agriculture to function and adapt as well as the external impact of constantly evolving socio-economic and natural environment. However, it is to be well distinguished the features of relatively independent (sub)systems -e.g. while “satisfaction from farming activity” is an important social attribute of agrarian sustainability, the modernization of social infrastructure and services in rural areas is merely a prerequisite (factor) for the long-term sustainability of farms and agrarian sector.

Incorporated internal dynamism of the systems also implies an “end life” (there is no system which is sustainable forever) as a particular agrarian system is considered to be sustainable if it achieves (realizes) its “expected lifespan” (Raman, 2006). For instance, if due to the augmentation of farm households’ income the number of subsistence and part-time farms is decreasing while agrarian resources are effectively transferred to other structures, this process should not be associated with a negative change in sustainability. On the other hand, if farms of a particular type and sector are not able to adapt to the dynamic economic, institutional and climate changes through adequate modernization in technology, product, and organization, their sustainability is low.
Characterization of sustainability must also be predictive since it deals with future changes rather than the past and only the present. In addition, sustainability has to be a criterion for guiding changes in policies, and farming and consumption practices, agents’ behavior, for focusing of research and development priorities, etc. In that sense, analysis of the levels and factors of “historical” sustainability of farms of certain type and specialization, particular agro-ecosystems or regions, or entire sector (“achieved level of sustainability”) are extremely useful for the theory and practice. The assessments of past states help identify critical factors and trends in sustainability of farms and industry, and undertake efficient measures for its improvement by managers, stakeholders, state authority, etc.

Sustainability is to allow facile and rapid diagnostic, and possibility for intervention through identification and prioritizing restrictions, testing hypothesis, and giving possibility for comprehensive assessments. Since most system are difficult to comprehend, calculate, and monitor in everyday activity (Hayati et al., 2010), the later suggests that agrarian sustainability is easy to understand and practical to use by agents without being associated with huge costs.

Agrarian sustainability characterizes the ability of agriculture to maintain its economic, ecological and social functions in a long-term. Agriculture “produces” multiple products, “private” and “public” goods (food, rural amenities for hunting, tourism, land scape enjoyment), environmental and cultural services, habitat for wild animals and plants, biodiversity, including less desirable ones such as waste, harmful impacts etc. All these functions of agrarian production are to be taken into account as sustainable agriculture must be economically sustainable, and ecologically sustainable, and socially sustainable.

The evaluation of Bulgarian agrarian sustainability is based on a methodology developed for analysis of governance systems and sustainability levels in Bulgarian agriculture which is presented in details in our previous publications (Bachev et al., 2017). The system for assessing agrarian sustainability includes properly formulated and selected principles, criteria, indicators and reference values for each of them (Table 1). The principles are the highest level which expresses the state of sustainability within the three major aspects - economic, social and ecological. The criteria are more specific than principles and are related to indicators which express the state of agricultural sector assessed when the relevant principle is realized. The indicators are quantitative and qualitative variables from a different type, for example behavior, business, investment, outcome, impact which can be valued and allow the measurement of correspondence with a criteria, giving idea of sustainability in all its aspects. Reference values are the desired values such as absolute, relative, quality of each of the indicators for specific conditions of Bulgarian agriculture which assist the evaluation and give direction to improve/achieve sustainability (Bachev et al., 2017).

Information for each indicator is gathered from official sources – EUROSTAT, DG Agriculture and rural development, National Statistical Institute, Department “Agrostatistics” at the MAF, Ministry of environment and waters. For some of the indicators expert assessment is used.

Very often individual indicators for each Criteria, Principles and Aspects of sustainability are with unequal number that requires an integration of indicators (Table 1). For the integral assessment of sustainability for every Criterion, Principle, and Aspect, and the Overall level, equal weights are used for each Principle in a particular Aspect, and for each Criterion in a particular Principle, and for each Indicator in a particular Criterion.

<table>
<thead>
<tr>
<th>Principles</th>
<th>Criteria</th>
<th>Indicators</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial stability</td>
<td>Reducing dependence on subsidies</td>
<td>Share of direct payments in Net Income Stocks</td>
<td>EU average level EU average level</td>
</tr>
</tbody>
</table>

Table 1. Principles, criteria and indicators for assessment of Bulgarian agrarian sustainability at sectoral level

<table>
<thead>
<tr>
<th>Economic effectiveness</th>
<th>Minimizing dependence on external capital</th>
<th>Ratio of assets growth to interest paid</th>
<th>EU average level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive or high profitability</td>
<td>Cost - effectiveness</td>
<td>Profitability of capital</td>
<td>EU average level</td>
</tr>
<tr>
<td>Maximize or increase labour productivity</td>
<td>Labour productivity</td>
<td>EU average level</td>
<td></td>
</tr>
<tr>
<td>Maximize or increase land productivity</td>
<td>Productivity of land</td>
<td>EU average level</td>
<td></td>
</tr>
<tr>
<td>Maximize or increase livestock productivity</td>
<td>Livestock productivity</td>
<td>EU average level</td>
<td></td>
</tr>
</tbody>
</table>

| Competitiveness | Support or increase of marketed output | Share of imported product in the total agricultural product | EU average level |
| Support or increase of sales | GVA change | EU average level |

| Adaptability to economic environment | Sufficient adaptability to market environment | Ratio of factor income to fixed costs | EU average level |
| High investment activity | Growth of long-term assets | EU average level |

<table>
<thead>
<tr>
<th>Social Aspect</th>
<th>(ISa/n)</th>
<th>(n – number of Indicators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare of employed in agriculture</td>
<td>Equality of income with other sectors</td>
<td>Ratio of agricultural income to the average income in the country</td>
</tr>
<tr>
<td></td>
<td>Fair distribution of income in agriculture</td>
<td>Variation of payment of hired labour to factor income</td>
</tr>
<tr>
<td></td>
<td>Sufficient satisfaction from farm activity</td>
<td>Variation of employed in agriculture to the entire population</td>
</tr>
<tr>
<td>Conservation of farming</td>
<td>Preservation of the number of family farms</td>
<td>Number of family farms</td>
</tr>
<tr>
<td></td>
<td>Satisfactory working conditions</td>
<td>Share of family labour to all employed</td>
</tr>
<tr>
<td></td>
<td>Increasing the knowledge and skills</td>
<td>Average age of managers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Share of trained farmers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Share of the managers with secondary and higher education</td>
</tr>
<tr>
<td>Gender equality</td>
<td>Equality in men-women relations</td>
<td>Share of female farm managers</td>
</tr>
<tr>
<td>Social capital</td>
<td>Participation in professional associations and initiatives</td>
<td>Share of hired labour members of labour unions</td>
</tr>
<tr>
<td></td>
<td>Contribution to the development of regions and communities</td>
<td>Share of farm population in general population</td>
</tr>
<tr>
<td>Adaptability to the social environment</td>
<td>Sufficient ability to respond to the ceasing farming activity and the demographic crisis</td>
<td>Change in gross fixed capital formation to the change in the number of people employed in agriculture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ecological Aspect</th>
<th>(ISb/n)</th>
<th>(n – number of Indicators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air quality</td>
<td>Maintaining and improving air quality</td>
<td>Reduction of CO2 emissions</td>
</tr>
<tr>
<td>Land quality</td>
<td>Minimizing soil losses</td>
<td>Soil water erosion index</td>
</tr>
<tr>
<td></td>
<td>Preservation and improvement of soil fertility</td>
<td>Soil wind erosion index</td>
</tr>
<tr>
<td></td>
<td>Maintaining a balanced land use structure</td>
<td>Amount of nitrogen fertilization</td>
</tr>
<tr>
<td></td>
<td>Preservation of landscape features</td>
<td>Amount of phosphorus fertilization</td>
</tr>
<tr>
<td>Water quality</td>
<td>Maintaining and improving water quality</td>
<td>Share of arable land (without fallow) in total agricultural areas</td>
</tr>
<tr>
<td>Effective energy consumption</td>
<td>Minimizing the use of conventional energy</td>
<td>Amount of area covering the requirements for “green” direct payments through maintaining landscape elements</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>Maintaining or enhancing natural habitats</td>
<td>Program targets</td>
</tr>
<tr>
<td>Animal welfare</td>
<td>Compliance with the principles of animal welfare</td>
<td>Program targets</td>
</tr>
<tr>
<td>Organic production</td>
<td>Increasing the organic production</td>
<td>EU average level</td>
</tr>
<tr>
<td>Adaptability to the environment</td>
<td>Sufficient adaptability to climate change</td>
<td>EU average level</td>
</tr>
</tbody>
</table>

Source: Bachev et al., 2017.

The Integral Index for a particular Criterion (ISa), Principle (ISb), Aspect of sustainability (ISc) or Overall level (ISO) is an arithmetic average of relevant Indicators and Indices:

\[
IS_a = \frac{\sum IS_a}{n} \quad (n – number \ of \ Indicators)
\]

\[
IS_b = \frac{\sum IS_b}{n} \quad (n – number \ of \ Criteria)
\]

\[
IS_c = \frac{\sum IS_c}{n} \quad (n – number \ of \ Principles)
\]

\[
ISO = \frac{\sum IS_o}{3}
\]

JSAS, 4(3), H.I. Bachev et al., p.233-242.
On the basis of the indicators value and the reference value for each indicator sustainability score is calculated. The score could fall within one of six groups, presented in Table 2. These groups are applied also for the interpretation of the Integral Sustainability Index.

Table 2. Limits for grouping of integral assessments of agrarian sustainability

<table>
<thead>
<tr>
<th>Sustainability Index</th>
<th>Sustainability level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.91 - 1</td>
<td>Very High Sustainability</td>
</tr>
<tr>
<td>0.71 - 0.90</td>
<td>High Sustainability</td>
</tr>
<tr>
<td>0.51 - 0.70</td>
<td>Good Sustainability</td>
</tr>
<tr>
<td>0.31 - 0.50</td>
<td>Moderate Sustainability</td>
</tr>
<tr>
<td>0.11 - 0.30</td>
<td>Insufficient Sustainability</td>
</tr>
<tr>
<td>0 - 0.10</td>
<td>Unsustainable</td>
</tr>
</tbody>
</table>

Source: Governing and Assessment of Agrarian Sustainability - Experiences, Challenges, and Lessons from Bulgaria and China.

The primary level for calculating Integral indexes is the indicator sustainability score determined by the reference values. The reference values for each indicator have two thresholds (binary vector method). The lower threshold on which the indicator sustainability score is determined 0 (unsustainable) and an upper threshold, where the reference value complied to sustainability score up to 1 set up using the expert judgment, average numbers, trends, scientific norms, etc.

3. Results and discussion

Evaluating the different aspects of the Bulgarian agrarian sustainability is based on the developed methodology and a set of selected indicators. The focus in the research is evaluating the level of sustainability within the three main aspects – economic, social and ecological, and identifying the critical elements. Based on the indicators value within the three aspects an integral sustainability score is also calculated. The integral sustainability index of the Bulgarian agriculture is **0.58**. That means that the Bulgarian Agrarian Sustainability could be defined as **Good**. However there are still a lot of opportunities for improvement in future, because the index is closer to the lower group. That also requires understanding of the factors leading to this result and the respective role of each aspect for the Overall Sustainability of the Bulgarian agriculture.

Every aspect of agrarian sustainability has its principles, criteria and indicators that help calculating the total sustainability level of the Bulgarian agriculture. The value of each indicator on sectoral level was transformed into Sustainability Index. Principles are the highest hierarchical level associated with the multiple functions of agriculture – economic, social and ecological.

Our assessment has found out that the Economic sustainability of the Bulgarian agriculture is **Good** (index of sustainability 0.7). This aspect has been evaluated on the basis of four major principles – Financial stability, Economic effectiveness, Competitiveness and Adaptability. The lowest integral score is for the Economic effectiveness principle – 0.47 (Figure 1). Each of these principles has different criteria and indicators that are used for calculating the sustainability score.

![Figure 1. Indexes of sustainability for the major principles within the Economic aspect of agrarian sustainability](image_url)

Source: Own calculations, based on NSI, Agrostatistics department

JSAS, 4(3), H.I. Bachev et.al, p.233-242.
Twelve indicators are used to calculate the sustainability score of each one of the eleven criteria for the four principles of economic sustainability. Figure 2 presents the sustainability scores of the different indicators. The index of Economic effectiveness sustainability has been calculated on the basis of 5 indicators – Cost-effectiveness, Profitability of capital, Labour productivity, Productivity of land, and Livestock productivity.

Bulgarian agriculture is characterized by low labour, land and livestock productivity. This is due to different factors. The labour productivity in Bulgaria is lower than the EU average not only in the agriculture, but in the other economic sectors as well. That is due usually to low or old technology use, low labour quality, lack of qualification, lower motivation due to insufficient payment, aging labour force and other socio-economic factors. The labour productivity affects the economic effectiveness, but it is also strongly connected with the social aspects of the agrarian sustainability.

The land productivity of the Bulgarian agriculture is also on unsatisfactory level. The gross output per hectare in Bulgaria for the major arable crops is well below the EU average and it varies from year to year. The sustainability score for the livestock productivity is higher, but it is still only on Good level and it needs to be improved in order to ensure higher economic sustainability for the Bulgarian agriculture. Other indicators that show low or only Moderate sustainability levels are the Share of direct payments in the net income (0.35) and the Growth of the long term assets (0.50). Good is the sustainability score of the GVA change (0.53). These indicators demonstrate the high dependency of the Bulgarian agriculture on government transfers through the direct payments. In case these transfers are decreased or they stop this would affect the financial stability of the Bulgarian agriculture. Insufficient increase in the GVA of the Bulgarian agriculture and small rate of investment growth affects its long term economic sustainability negatively.

The indicators used to assess the sustainability (Figure 4) of the Welfare of employed in agriculture are: Ratio of agricultural income to the average income in the country; Variation of payment of hired labour to factor income; Variation of employed in agriculture to the entire population; Correspondence to official norms. While there is no big variation of the Payments of the hired labor to the factor income (the sustainability score of this indicator is 0.8 which means...
High sustainability) and Variation in the number of employed (0.52 sustainability score which denotes Good sustainability), the other two indicators have low sustainability score - Ratio of agricultural income to the average income in the country has a score of only 0.15 and Correspondence to official norms – 0.27 that means they have Insufficient sustainability.

Higher sustainability score has the Conservation of farming principle, although the share of trained farms is very low. It sustainability score is only 0.06. This indicator emphasizes a specific problem that need and should be addressed. More employed in the agriculture should receive training and possibilities to develop their skills and knowledge in order to increase the sustainability of the agricultural sector. One of the problems is that a big percent of the employed are seasonal workers that could not be trained specifically for a certain job or operation.

Figure 3. Indexes of sustainability for the major principles within the Social aspect of agrarian sustainability in Bulgaria

Source: Own calculations, based on NSI, Agrostatistics department

Gender inequality is another major issue that Bulgarian agriculture faces and which leads to low score for the Equality principle. Based on data of the share of women farm managers the indicator value suggests that there is inequality. The percentage of women on managerial positions is low, as well as the number of women that own agriculture businesses. However, the women are active members of the rural community which could in future increase their decision-making roles.

The highest is the value of the Index of adaptability to the social environment. Having in mind the changing social structure, the decline in the number of employed in agriculture, as well as the demographic crisis in the rural areas, there is a positive trend in the ratio of gross fixed capital formation to labour availability. That means that the shortage of labour could be successfully resolved with more capital formation.

Figure 4. Indicators of social sustainability of Bulgarian agriculture

Source: Own calculations, based on NSI, Agrostatistics department

The *Environmental sustainability* of the Bulgarian agriculture is assessed as *Good with a score of 0.53*. This is the aspect with most diverse indicators covering eight principles of environmental sustainability (Figure 6). The highest level of sustainability has been measured for the *Effective energy consumption* (0.77) and the *Adaptability to the environment* (0.74). Concerns stem from the level of the indexes for some of the principles that are critical for ensuring environmental sustainability. Such principles are the *Air quality*, *Biodiversity*, *Animal welfare*, and *Organic production*.

![Figure 6. Indexes of sustainability for the major principles within the Environmental aspect of agrarian sustainability in Bulgaria](image)

Source: Own calculations, based on NSI, Agrostatistics department, EUROSTAT and reports from MOEW

The role of agriculture for maintaining and improving the air, water and soil quality, and preserving the biodiversity is important, since it has direct effects on the environment and its elements. As evident from the sustainability assessment we have conducted, these areas are also among the critical fields where the public and governmental efforts should be focused.

The individual scores of the different indicators within the ecological aspect of sustainability are also very diverse (Figure 7). The highest sustainability score is calculated for the *Amount of area covering the requirements for “green” direct payments through maintaining landscape elements* (0.84) and the *Soil wind erosion index* (0.81). The high level of compliance of the Bulgarian farmers with the so called “green” requirements could be attributed to the different options they were able to choose from.

The lowest score is for the following indicators: *Change in the number of habitats* (0.24), *Share of areas under conversion or certified for organic production* (0.27), and *Level of compliance with the principles of animal welfare* (0.32).

![Figure 7. Indicators of social sustainability of Bulgarian agriculture](image)

Source: Own calculations, based on NSI, Agrostatistics department, EUROSTAT and reports from MOEW

All this indicators reveal that there is still much work needed in order to ensure that the agriculture does not harm the environment and the biodiversity. It is
important to point out that in several areas the Bulgarian agriculture demonstrates strong sustainability, like the effective energy consumption. It should be made sure that in case of more intensive economic growth these high scoring factors will not deteriorate.

The agrarian sustainability assessment is important for detecting critical areas that should be addressed by the policy makers in Bulgaria. Previous attempts to assess the agriculture on macro-level haven’t been made, but on micro-level Bachev (2017) and Bachev (2016) analyzes the level of sustainability of the Bulgarian farms. According to survey with farm managers the economic sustainability is weaker than the environmental and social at farm level. Our sectoral analyzes gives the opposite results - a higher economic sustainability and lower social and ecological. This could be due to several reasons - the different objectives and assessment methodology of studies. While our current assessment is on the sustainability of agriculture, the former study concerns sustainability of diverse farming structures (which is only a part of the sustainability of agrarian sector as a whole). Similarly, data for this study are at national level, from national statistics and are summarized, while farm level data used in referred publication is from survey with farm managers. It is well-known that the managers of agricultural holdings usually consider their economic situation as more important and often identify ecological and social aspects as secondary and therefore consider that these objectives are easier to achieve. Most of the managers in the survey quote that their activity meets almost all ecological and social requirements.

This discrepancy is also a reason to implement a research at the farm level as part of this research project with the same methodology and indicators used at sectoral level. This will allow for full comparability of the results and will provide a picture of the actual differences in the way micro-and micro-level sustainability is assessed and evaluated in agriculture.

4. Conclusions

The development of coherent and adequate agricultural and food policies require recognizing the main critical areas that influence negatively the development of sustainable and efficient agriculture. Sustainability is a key concept that will have greater importance in the future, having in mind the problems the world population is facing with the climate and all unexpected effects of its change. Agricultural scientists have recognized the importance of sustainable agrarian development, although there is no universally accepted definition and methodology to assess it. This article offers methodology and assessment of the different aspects of the Bulgarian agrarian sustainability in its economic, social and ecological aspects. The overall level of sustainability is Good (0.58). All the aspects have been assessed as Good, but the sustainability index of the economic aspect (0.70) is significantly higher than the indexes of the social and ecological aspects (both 0.53). There are critical areas within each aspect that require specific measures in order to ensure the sustainable development of the Bulgarian agriculture.

Suggested holistic approach will be further experimented at different (subsectoral, ecosystem, regional, farm) levels, improved and ultimately applied for comparative studies of sustainability levels of Bulgarian and other (Chinese, East European, etc.) agricultures.

References

FAO, (2013). SAFA. Sustainability Assessment of Food and Agriculture systems indicators, FAO.

Copiesrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by-nc/4.0).
