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Abstract. Technological parasitism is a new theory to explain the evolution of technology in 
society. In this context, this study proposes a model to analyze the interaction between a 
host technology (system) and a parasitic technology (subsystem) to explain evolutionary 
pathways of technologies as complex systems. The coefficient of evolutionary growth of the 
model here indicates the typology of evolution of parasitic technology in relation to host 
technology: i.e., underdevelopment, growth and development. This approach is illustrated 
with realistic examples using empirical data of product and process technologies. Overall, 
then, the theory of technological parasitism can be useful for bringing a new perspective to 
explain and generalize the evolution of technology and predict which innovations are likely 
to evolve rapidly in society. 
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1. Introduction 
his paper has two goals. The first is to propose a new perspective to 
measure and assess the evolution of technology, using a broad 
analogy with the evolutionary ecology of parasites. The second is to 

suggest properties that explain and generalize, whenever possible 
characteristics of the evolution of technology to predict which innovations 
are likely to evolve rapidly.  

The analysis of the technology change and evolution of technology plays 
an important role in social studies of technology to explain the nature of 
innovation and predict patterns of technological innovation directed to 
solve problems and satisfy needs in society (Anadon et al., 2016; Andriani & 
Cohen, 2013; Angus & Newnham, 2013; Basalla, 1988; Freeman & Soete, 
1987; Grodal et al., 2015; Hosler, 1994; Nelson & Winter, 1982; Rosenberg, 
1969). In particular, measurement of the evolution of technology is an 
increasing challenge faced by governments, agencies and public research 
labs for improving technological forecasting and, as a consequence, 
supporting new technology for economic progress in society (cf., Coccia, 
2005; Daim et al., 2018; Hall & Jaffe, 2018; Linstone, 2004; Tran & Daim, 
2008). Scholars in this field of research endeavor of measuring technological 
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advances of products and processes and technical performance of 
innovations with different approaches to explain determinants and 
directions of technological progress1. For instance, Nordhaus (1996, p.29ff) 
applies an economic approach to estimate changes in lighting efficiency 
with a price index based on changes over the last two centuries, showing 
that the growth of real wages and real output in economic systems may 
have been significantly understated during the period since the Industrial 
Revolution. Other scholars apply engineering approaches to measure the 
advances of technical characteristics of innovations and explain different 
technological pathways (Dodson, 1985; Fisher & Pry, 1971; Knight, 1985; 
Martino, 1985; Sahal, 1981).  

Although many studies of technology analysis, a technometrics that 
measures and assesses the evolution of technology as a complex system of 
interacting technologies is, at author’s knowledge, unknown. The study 
here confronts this problem by developing a new approach to measure and 
assess the evolution of technology within theoretical framework of 
“Generalized Darwinism” (Hodgson & Knudsen, 2006, 2008). Wagner & 
Rosen (2014) argue that the application of evolutionary biology to different 
research fields has reduced the distance between life sciences and social 
sciences (cf., Nelson & Winter, 1982; Dosi, 1988). In general, analogies2 

derived from Darwinian evolutionary biology have provided meta-
theoretical frameworks for interdisciplinary studies of the nature and 
evolution of technology (cf., Arthur, 2009; Arthur & Polak, 2006; Basalla, 
1988; Coccia, 2018; Kauffman & Macready, 1995; Nelson, 2006). In fact, 
evolutionary biology, applied in economics of technical change, provides a 
logical structure of scientific inquiry to analyze and explain, in a broad 
analogy, characteristics and evolutionary pathways of technology (cf., 
Andriani & Cohen, 2013; Coccia, 2018; Wagner, 2011).  

In general, technological change can be explained by a process of 
competitive substitution of a new technology for the old one (Fisher & Pry, 
1971). However, technological progress is due to various aspects and 
dynamics of technological innovation (Coccia, 2005, 2018). Pistorius & 
Utterback (1997, p.67) argue that a multi-mode interaction between 
technologies provides a much richer theoretical framework for technology 
analysis. In particular, Pistorius & Utterback (1997, p.72ff) suggest different 
interactions among technologies in analogy with biology, more precisely: 
pure competition, symbiosis and predator-prey. Sandén & Hillman (2011, 
p.407) discuss a further refinement of technological interactions by 
introducing a six-mode typology, using similarity with the interaction of 
species: neutralism, commensalism, amensalism, symbiosis, competition, 
and parasitism and predation into one category. A research challenge in 
this research field is the development of technometrics to measure different 

1 cf., Angus & Newnham, 2013; Coccia, 2005; Daim et al., 2018; Farrell, 1993; Farmer & 
Lafond, 2016; Faust, 1990; Koh & Magee, 2006, 2008; Magee et al., 2016; Nagy et al., 2013; 
Ruttan, 2001; Tran & Daim, 2008; Wang et al., 2016. 

2 cf., Oppenheimer, 1955. 
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modes of technological interaction and transition between modes to explain 
the evolution of technology.  

In this context, the study here suggests a new conceptual framework for 
measuring and predicting technological evolution, applying a broad 
analogy with evolutionary ecology of parasites (cf., Coccia, 2018). In 
particular, the evolution of technology is analyzed here in simple way in 
terms of morphological changes between a host technology and a main 
technological parasitic subsystem. The proposed model assesses the types 
of interaction supporting the evolution of technology to suggest a 
technological forecasting of innovations that grow rapidly. This new 
perspective is verified on different technologies, using historical data. 
Overall, then, the theoretical framework here, borrowing conceptual 
insights from evolutionary ecology of parasites can extend the economics of 
technical change with a new approach that explains and generalizes 
evolutionary processes of innovation through interaction between 
technologies in a complex system. Moreover, results of this study here 
could aid policymakers and managers to predict which technologies are 
likely to evolve rapidly in order to design best practices of management of 
technology for accelerating industrial and economic change in society. In 
order to position this study within existing literature, next section describes 
different approaches for measuring technological advances. 

 
2. Theoretical background of the measurement of 

technological evolution 
The central issue for a theory of measurement is two basic problems: the 

first is the justification of assignment of the numbers to objects or 
phenomena (called representational theorem); the second is the 
specification of degree to which this assignment is unique (uniqueness 
theorem; cf., Luce et al., 1963; Suppes & Zinnes, 1963; Stevens, 1959). In the 
research field of the measurement of technology, technometrics is a 
theoretical framework for the measurement of technological advances and 
technological change with policy implications (Sahal, 1985; cf. also Sahal, 
1981). Some approaches of the measurement of technological advances are 
described as follows, without pretending to present a comprehensive 
overview of the methods of technometrics (Coccia, 2005, p.948ff).  

 
2.1. Hedonic approach  
The assumption of this approach is a positive relationship between 

market price of a good or service and its quality. In particular, it is assumed 
that a particular product can be represented by a set of characteristics and 
by their value; hence, the quality of product Qj is function of defining 
characteristics: 
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where ai is the relative importance of the i-th characteristics and Xij is 

the qualitative level of characteristics in product j. Technological progress 
can be defined here as the change in quality during a given period of time: 
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Moreover, the observed changes in the price of a product can be 

decomposed into a “quality/technological change effect” and “pure price 
effect” (cf., Coccia, 2005, pp.948-949; Saviotti, 1985). 

 
2.2. RAND3 approach  
A technological device has many technical parameters that measure its 

characteristics and characterize the state-of-the-art (SOA). Dodson (1985) 
proposes a planar and an ellipsoidal surface of SOA to measure technical 
advances of products:  
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where xiis the i-th technological characteristic and ai is the i-thparameter 

(a constant). Alexander & Nelson (1973) suggest hyperplanes for the 
surface of SOA, instead of ellipses. In brief, Hedonic and RAND techniques 
for measuring technological advances are similar and differ only in the 
choice of dependent variable, which is price in the former and calendar 
year in the latter (Coccia, 2005, pp.949-952). 

 
2.3. Functional and Structural approach  
The technique by Knight (1985) is based on a functional and a structural 

description of a given technology to detect its evolution. In regard to the 
functional description of a new computer over an earlier one, this 
technique can indicate how technological advancement has taken place, but 
it does not specify the details of new development. In order to explain 
technological issues, it is also necessary the structural description between 
technologies by comparing the structure of new systems with that of earlier 
ones (cf., Coccia, 2005, pp.955-957). The structural approach was originated 
by Burks et al., (1946) that describe the “logical design for a general-
purpose digital computer”, showing key information needed to determine 
its functional performance and computing power (as quoted by Knight, 
1985, p.109). 

3 RAND Corporation ("Research and Development") is an U.S. research organization that 
develops researches to support the security, health and economic growth of the USA, 
allied countries and in general the world.  
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2.4. Wholistic and Holistic approaches  
Sahal (1985) suggests two ideas of technometrics. In the first approach 

called Wholistic, the state-of-the-art (SOA) is specified in terms of a surface 
of constant probability density given the distribution of technological 
characteristics. The SOA at any given point in time is represented by a 
probability mountain, rising above the geometric plane. The level of 
technological capability is given by the height of mountain. Instead, the 
magnitude of technological change can be estimated by the difference in 
heights of successive mountains. In the second approach called Holistic, a 
technological characteristic is specified as a vector in an N-dimensional 
space generated by a set of N linearly independent elements, such as mass, 
length, and time. The length of the vector represents the magnitude of a 
technological characteristic, whereas the type of characteristic is 
represented by direction. In this case, the SOA reduces to a point. The 
successive points at various times constitute a general pattern of 
technological evolution that evinces a series of S-shaped curves. These two 
approaches are distinct but related (Coccia, 2005, p.955).   

 
2.5. Model of technological substitution for measuring 

technological evolution  
Fisher & Pry (1971, p.75) argue that technological evolution consists of 

substituting a new technology for the old one, such as the substitution of 
coal for wood, hydrocarbons for coal, robotics technologies for humans (cf., 
Daim et al., 2018), etc. Technological advances are represented by 
competitive substitutions of one method of satisfying a need for another. 
Fisher & Pry (1971, p.88) state that: “The speed with which a substitution 
takes place is not a simple measure of the pace of technical advance… it is, 
rather a measure of the unbalance in these factors between the competitive 
elements of the substitution”.  

 
2.6. Technological advances measured with patent data 
Faust (1990, p.473) argues that patent indicators allow for a 

differentiated observation of technological advances before the actual 
emergence of an innovation, such as technological development in the 
scientific field of superconductivity. Wang et al., (2016, p.537ff) investigate 
technological evolution using US Patent Classification (USPC) 
reclassification. Results suggest that: “patents with Inter-field Mobilized 
Codes, related to the topics of ‘Data processing: measuring, calibrating, or 
testing’ and ‘Optical communications’, involved broader technology topics 
but had a low speed of innovation. Patents with Intra-field Mobilized 
Codes, mostly in the Computers & Communications and Drugs & Medical 
fields, tended to have little novelty and a small innovative scope” (Wang et 
al., 2016, p.537, original emphasis).  Future research in this research field 
should extend the patent sample to subclasses or reclassified secondary 
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USPCs in order to explain in-depth technological evolution within a 
specific scientific field. 

 
2.7. Other approaches for measuring technological evolution  
New criteria of technological assessment apply technology development 

envelope (extension of hierarchical decision modeling and analytical 
hierarchy process into the future) to detect multiple pathways for 
technological evolution and construct strategic roadmapping, as illustrated 
by Daim et al., (2018, p. 49ff) for robotics technologies.  

Koh & Magee (2006; 2008) suggest an approach for studying 
technological progress based on three functional operations—storage, 
transportation and transformation. Results for information and energy 
technology indicate a continuous progress for each functional category 
independent of the specific underlying technological artifacts dominating 
at different times. However, some differences between energy and 
information technology are seen (cf. also, Valverde, 2016 for transitions in 
information technology). Magee et al., (2016) show that Moore's law is a 
better description of long-term technological change when the performance 
data come from various designs, whereas experience curves may be more 
relevant when a singular design in a given factory is considered. In 
particular, Magee et al., (2016, p.245) argue that: “Moore's exponential law 
appears to be more fundamental than Wright's power law for these 28 
domains (where performance data are record breakers from numerous 
designs and different factories)”. Moreover, Wright’s approach shows that 
the cost of technology decreases as a power law of cumulative production, 
whereas generalized Moore’s law shows that technologies improve 
performance exponentially with time. Nagy et al., (2013, p.1)−using a 
statistical model to rank the performance of the postulated laws applied on 
cost and production of 62 different technologies−claim that:  

Wright’s law produces the best forecasts, but Moore’s law is not far 
behind…. results show that technological progress is forecastable, with the 
square root of the logarithmic error growing linearly with the forecasting 
horizon at a typical rate of 2.5% per year. These results have implications 
for theories of technological change, and assessments of candidate 
technologies and policies for climate change mitigation.  

In this context, for predicting technological progress, Farmer & Lafond 
(2016, p.647): “formulate Moore’s law as a correlated geometric random 
walk with drift, and apply it to historical data on 53 technologies… to make 
forecasts for any given technology with a clear understanding of the quality 
of the forecasts. … to estimate the probability that a given technology will 
outperform another technology at a given point in the future”.  
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Table 1. Strengths and weaknesses of some technometric approaches  

Technometrics Strengths Weaknesses 

Hedonic  
Hedonic function estimates a price surface. 
Hedonic method considers both economic 
and technical information. 

First, the technique works best in cases of a 
distinct product technology. It cannot easily be 
applied to cases of a process technology. 
Second, the Hedonic approach is unsuitable for 
international comparisons because of significant 
differences in factor prices among countries. 
Third, it cannot be used in an ‘unskilled’ way to 
measure changes in technology. 
Finally, its theoretical status is still not clear. 

RAND 

State of the art (SOA) surfaces can reveal 
whether technological changes are “biased” 
toward increasing the relative availability 
(decreasing the relative cost) of one 
characteristic, or a group of them, relative to 
others. 

First, the estimation procedure is arbitrary and 
difficult.  
Second, it does not take into account the 
correlations between technological 
characteristics, thereby seriously obscuring if not 
distorting the real rate and extent of technical 
progress. 

Functional  
and  
Structural 

The methodology has excellent potential 
application for most product and production 
technologies. 

The full use of the functional/structural analysis 
to isolate and describe specific technologic 
advances and their values has found limited 
successful use. 

Wholistic  
and  
Holistic 

Wholistic. The framework provides an 
objective basis for determining the critical 
variables in the evolution of technology. The 
reproducibility of the results is excellent. 
Holistic. It provides an a priori theoretical 
basis for the selection of relevant variables, 
the choice of a functional form, and the 
quantification of weights assigned to each of 
the variables. It is possible to identify the 
sources underlying the observed advances in 
technology. 

Methodological issues (e.g., data collection, etc.). 

Fisher and 
Pry’s Model 

Technological advances are represented by 
competitive substitutions between new and 
old products. 

Technological progress is due to multi-mode 
interaction among technologies rather than mere 
competition.  

 
Table 1 synthetizes some approaches of the measurement of 

technological advances with pros and cons. Many techniques of the 
analysis of technological advances focus on competition between 
technologies, such as substitution model by Fisher & Pry (1971) and 
predator-prey interaction by Pistorius & Utterback (1997). This study here 
endeavors to measure the evolution of technology considering an 
alternative perspective based on interactions between a host-master 
technology and its main parasitic subsystem of technology to predict long-
term development of the complex system of technology (cf., Coccia, 2018). 
Next section presents the conceptual framework of the suggested 
technometrics here.  

 
3. Evolutionary ecology of technology within a 

Generalized Darwinism 
The scientific departure of the proposed technometrics here is principles 

of the “Generalized Darwinism” (Hodgson & Knudsen, 2006, 2008) that 
provide suitable concepts for framing a broad analogy between evolution 
of technologies and evolutionary ecology of parasites to measure and 
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explain different evolutionary pathways of technology itself. In economics 
of technical change, the generalization of Darwinian principles 
(“Generalized Darwinism”) can assist in explaining the multidisciplinary 
nature of many innovation processes (cf., Basalla, 1988; Farrell, 1993; 
Hodgson & Knudsen, 2006; Levit et al., 2011; Nelson, 2006; Schubert, 2014; 
Wagner & Rosen, 2014). In this context, Arthur (2009) argues that 
sociocultural evolution is related to the evolution of technology and 
Darwinism can explain technology development as it has done for species 
development (cf., Schuster, 2016, p.7). In general, technological evolution, 
as biological evolution, displays radiations, stasis, extinctions, and novelty 
(Valverde et al., 2007). Kauffman & Macready (1995, p.26, original 
emphasis) state that: “Technological evolution, like biological evolution, 
can be considered a search across a space of possibilities on complex, 
multipeaked ‘fitness,’ ‘efficiency,’ or ‘cost’ landscapes”. Schuster (2016, p.8) 
argues that:  “Technologies form complex networks of mutual dependences 
just as the different species do in the food webs of ecosystems”. Kauffman 
& Macready (1995, p.27 and p. 42) also point out that:  

Evolution, biological or technological, is actually a story of coevolution. 
Adaptive alterations by the predatory bat alter the adaptive landscape of its 
frog prey. Alterations in the maximum power of the engine of an 
automobile alter optimal tire, suspension, and even highway design. 
Coevolution is a process of coupled, deforming landscapes where the 
adaptive moves of each entity alter the landscapes of its neighbours in the 
ecology or technological economy (p.27)…. Biological and technological 
evolution are both characterized by the requirement to solve hard 
combinatorial optimization problems… These interrelated features of many 
hard combinatorial optimization problems are therefore likely to underlie 
features of biological and technological evolution (p.42).  

Nelson (2006, p.491) claims that a broad approach of Universal 
Darwinism in social sciences is: “a roomy intellectual tent welcoming 
scholars studying a variety of topics”.  

The crux of the study here is to measure and assess the evolution of 
technologies in a broad analogy with evolutionary ecology of parasites 
within a setting of Generalized Darwinism. Some brief backgrounds of the 
evolutionary ecology of parasites are useful to clarify the technometrics 
proposed here. Firstly, ecology studies the relationship functions and 
interactions between organisms of the same or different species and 
environment in which they live (cf., Poulin, 2006). In particular, the scope 
of the ecology is to explain all sorts of interaction of organisms to one 
another and to their environment. Secondly, the evolutionary ecology of 
parasites focuses on parasites (from Greek para = near; sitos = food) that are 
any life form finding their ecological niche in another living system (host). 
Parasites have a range of traits that evolve to locate in available hosts, 
survive and disperse among hosts, reproduce and persist (cf., Janouskovec 
& Keeling, 2016). Coccia (2018) argues that technologies can have a 
behavior similar to parasites because technologies cannot survive and 
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develop as independent systems per se, but they can function and evolve in 
markets if associated with other host technologies, such as audio 
headphones, speakers, software apps, etc. that function if and only if they 
are associated with host electronic devices (e.g., smartphone, radio receiver, 
television, etc.).   

This study endeavors to measure the effect that one host technology has 
on growth rate of parasitic technology to explain the evolution of the 
overall complex system of technology.  

 
4. Model for the evolution of technology in complex 

systems 
Evolution is a stepwise and comprehensive development [it originates 

from Latin evolution –onis, der. of evolvĕre = act of carrying out (the 
papyrus)]. In general, the process of development generates the formation 
of complex systems in nature and society (cf., Barton, 2014). The theoretical 
framework of “Universal Darwinism” (Dawkins, 1983; Nelson, 2006) claims 
that: “Darwinism involves a general theory of all open, complex systems” 
(Hodgson 2002, p.260; cf., Levit et al., 2011). Hodgson & Knudsen (2006) 
suggest a generalization of the Darwinian concepts of selection, variation 
and retention to explain how complex systems evolve (cf. also, Hodgson, 
2002; Stoelhorst, 2008). Hence, in order to show the proposed metrics of the 
evolution of technology here, it is important to clarify the concept of 
complex system. Simon (1962, p.468) in the study of complexity states that: 
“a complex system [is]… one made up of a large number of parts that 
interact in a nonsimple way... complexity frequently takes the form of 
hierarchy, and... a hierarchic system… is composed of interrelated 
subsystems, each of the latter being, in turn, hierarchic in structure until we 
reach some lowest level of elementary subsystem.” In the field of 
technology, McNerney et al. (2011, p. 9008) argue that: “The technology can 
be decomposed into n components, each of which interacts with a cluster of 
d − 1 other components” (cf., Gherardi & Rotondo, 2016; Oswalt, 1976; 
Magee, 2012, p.16ff. for materials innovation). Arthur (2009, pp.18-19) 
claims that: “Technologies somehow must come into being as fresh 
combinations of what already exists”. This combination of components and 
assemblies is organized into systems to some human purpose and has a 
hierarchical and recursive structure. In particular, the evolution of 
technology is due to major innovations and numerous minor innovations 
that interact in a complex system of technology (cf., Coccia, 2018; Sahal, 
1981, p.37). Sahal (1981) points out that: “evolution… pertains to the very 
structure and function of the object (p.64)… involves a process of 
equilibrium governed by the internal dynamics of the object system (p.69)”. 
Moreover, the short-term evolution of technology is due to changes within 
system, whereas the long-term evolution is possible by forming an 
integrated system (Sahal, 1981, pp.73-74). This study here endeavors, 
starting from theoretical background discussed above, to measure and 
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assess interaction between technologies within a host-parasite system for 
forecasting evolutionary pathways over time 4. The following premises 
support the technometrics here (Coccia, 2018):  

Technology is a complex system composed of more than one entity or 
sub-system and a relationship that holds between each entity and at least 
one other entity in the system. The technology is adapted in the 
Environment E with a natural selection operated by market forces and/or 
artificial selection operated by human beings (based on efficiency, 
technical, environmental and economic characteristics) to satisfy needs, 
achieve goals and/or solve problems in human society. 

In the long run, the behavior and evolution of any technology is not 
independent from the behavior and evolution of the other technologies 
(Coccia, 2018). 

Interaction between technologies is an interrelationship of 
information/resources/energy and other physical/chemical phenomena for 
reciprocal adaptations in inter-related complex systems.  

Coevolution of technologies is the evolution of reciprocal adaptations in 
a complex system supporting the reciprocal enhancement of technologies’ 
growth rate—i.e., a modification and/or improvement of technologies 
based on interaction and adaptation in complex systems and markets to 
satisfy changing needs and solve consequential problems in society. 

P is a parasitic technology in H (host or master technology) if and only if 
during its life cycle, technology P is able to interact and adapt into the 
complex system of technology H, generating coevolutionary processes to 
satisfy needs, achieve goals, and/or solve problems in society.  

In general, technologies form complex systems based on subsystems of 
technology that interact in a non-simple way (e.g., batteries and antennas in 
electronic devices; cf., Coccia, 2018). Overall, then, the interaction between 
technologies in a complex system tends to generate stepwise 
coevolutionary processes within “space of the possible” (Wagner & Rosen, 
2014, passim).  

In order to operationalize the approach here to measure, assess and 
predict the evolution of technology here, this study proposes a simple 
model of technological interaction between a host technology H and an 
interrelated parasitic subsystem of technology. This model measures 
changes in a subsystem of parasitic technology in relation to proportional 
changes in the overall host system of technology. In particular, this model 
measures the effect that one host technology has on parasitic technology's 
growth rate. This approach is based on the biological principle of allometry 
that was originated to study the differential growth rates of the parts of a 
living organism’s body in relation to the whole body (cf., Reeve & Huxley, 
1945 for evolutionary biology studies; Sahal, 1981 for patterns of 
technological innovation).  

4  Barabási et al., (2001) suggested a parasitic computer to solve the nondeterministic 
polynomial time-complete satisfiability problem by engaging different web servers 
physically located in three continents (America, Europe and Asia).  
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The general model is based on following assumptions.  
Suppose the simplest possible case of only two technologies, H (a host or 

master technology) and P (a parasitic subsystem of technology in H), 
forming a Complex System S(H, P); of course, the model can be generalized 
for complex systems including many subsystems of technology.  

Let P(t) be the extent of technological advances of a technology P at the 
time t and H(t) be the extent of technological advances of a technology H 
(master or host system) that interacts with P at the same time (cf., Sahal, 
1981, pp. 79-89). Suppose that both P and H evolve according to some S-
shaped pattern of technological growth, such a pattern can be represented 
analytically in terms of the differential equation of logistic function. For H, 
Host technology, the starting equation is:  
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The growth of H(t) can be described respectively as: 
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Mutatis mutandis, for Parasitic technology P(t) the equation is: 
 

tba
P
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       (2) 
 
The logistic curve here is a symmetrical S-shaped curve with a point of 

inflection at 0.5K with 2,1a are constants depending on the initial conditions, 
2,1K  are equilibrium levels of growth, and 2,1b  are rate-of-growth 
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parameters (1=Host technological system, 2=Parasitic technological 
subsystem).  

Solving equations [1] and [2] for t, the result is: 
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The expression generated is: 
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Equation [3] in a simplified form is C1=exp[b1(t2-t1)] with a1=b1t1 and 

a2=b2t2 (cf. Eqs. [1] and [2]); when P and H are small in comparison with 
their final value, the model of technological evolution of the host-parasite 
system is given by: 
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The logarithmic form of the equation [4] is a simple linear relationship:  
 

HBAP logloglog +=         (5) 
 
B  is the evolutionary coefficient of growth that measures the evolution 

of technology P (Parasite) in relation to H (Host or Master technology).  
This model of the evolution of technology [5] has linear parameters that 

are estimated with the Ordinary Least-Squares Method. The value of 
𝐵𝐵 >

<
 1 in the model [5] measures the relative growth of P in relation to the 

growth of H and it indicates different patterns of technological evolution: 
B<1 (underdevelopment), B ≥ 1 (growth or development of technology P). 
In particular,  

1<B , whether technology P (a subsystem of H) evolves at a lower 
relative rate of change than technology H; the whole system of technology 
S(H, T) has a slowed evolution (underdevelopment) over the course of 
time.   

B  has a unit value: 1=B , then the two technologies P and H have 
proportional change during their evolution: i.e., a symmetrical coevolution 
between a system of technology (H)and its interacting subsystem P. In 
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short, when B=1, the whole system of technology S(H, T) here has a 
proportional evolution (growth) of its sub-systems of technology.    

1>B , whether P evolves at greater relative rate of change than H; this 
pattern denotes disproportionate technological advances in the structure of 
a subsystem P as a consequence of change in the overall structure of a host 
technological system H. The whole system of technology S(H,T) has an 
accelerated evolution (development) over the course of time.  

The coefficient B of evolutionary growth can be a metric for classifying 
the modes of interaction between technologies. Moreover, this coefficient B 
is systematized in an ordinal scale that indicates typologies of the evolution 
of technology and grade of how a host technology can enhance or inhibit 
the growth rate of parasitic technology (table 2).  

 
Table 2. Scale of the evolution of technological subsystem P in relation to Host technology H 

Grade of 
evolution  
of the  
system of 
technology 

Coefficient 
of 
evolutionary 
growth of  
the 
subsystem of 
technology P 

Type of the 
evolution 
of subsystem 
of technology 
P in relation to 
H 
(Symbol) 

Mode of 
 
technological 
interactions  
between 
technologies 
 H and P  

Evolution  
of overall complex 
system of  
technology 
 
(Symbol) 

Predictions of the  
evolution of 
overall system of 
technology 

1 Low B<1 
Reduced 

/ Parasitism 
Underdevelopment 

/ 

Complex system 
of technology 
evolves slowly 
over time 

2 Average B=1 Proportional 
+ 

Mutualism Growth 
+ 

Complex system 
of technology has 
a steady-state 
growth 

3 High B>1 Accelerated 
! 

Symbiosis Development 
! 

Complex system 
of technology is 
likely to evolve 
rapidly 

Note: Symbols /, +, ! indicate in brief the type of technological evolution: underdevelopment, growth 
and development respectively.  

 
Table 2 also suggests some symbols to indicate the intensity of growth 

rate of complex system of technology, measured with the coefficient of 
evolutionary growth B in model [5]: \ = underdevelopment, +=growth, and 
!= development.  

Properties of the scale of the evolution of technology are (table 2):  
Technology of higher rank-order on the scale (with B>1) has higher 

technological advances of lower rank-order technologies (with B<1). 
If a technology has the highest ranking on the scale (i.e., with B>1), it 

evolves rapidly (development) over the course of time. Vice versa, if a 
technology has the lowest ranking on the scale (with B<1), it evolves slowly 
(underdevelopment). 

Technology of the highest rank order on the scale (with B>1) has 
accumulated all previous evolutionary stages of low rank order and 
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generates a symbiotic growth between a system of technology H and its 
interacting subsystem of technology P. 

The logical relation of interactions between technologies is: technological 
parasitism ⊆ technological mutualism ⊆ technological symbiosis (the 
symbol ⊆ indicates subset in the set theory). 

The model here suggests different grades of technological evolution of 
the subsystem of technology P supporting the evolution of overall complex 
system of technology. In particular, the initial stage of technological 
interaction is a technological parasitism between host and parasitic 
subsystem of technology (B<1). The change of coefficient B indicates the 
shift towards modes of stronger interaction between technologies within a 
complex system, such as technological mutualism (B=1) and technological 
symbiosis (B>1) that lead to a coevolution of the overall system of 
technology (cf., Coccia, 2018). Hence,  

B<1 indicates mainly a Technologicalparasitism: any type of 
relationships between two technologies where one technology P 
(subsystem technology) benefits from the other (Host) that, instead, has a 
negative benefit from this interaction. This relationship can generate a low 
development of the subsystem technology and, as a consequence, of the 
overall complex system of technology (cf., Coccia, 2018). The low growth of 
the complex system of technology is due to an unidirectional and 
asymmetrical effect from H →P 

B=1 indicates a Technologicalmutualism: any type of relationships in 
which each technology benefits from the activity of the other technology. 
This interaction between technologies supports mutual benefits with 
symmetric and proportion evolutionary growth both of host system of 
technology H and of parasitic subsystem of technology P. The bi-directional 
relation of growth is given by: H↔P.  

B>1indicates a Technologicalsymbiosis: any type of long-term 
relationships between technologies that interact and evolve together in a 
complex system. The technological interaction between H and P is: 
H⇔(strong) P.  

 
5. Materials and method 
5.1. Data and their sources 
The evolution of technology is measured here using historical data of 

five example technologies (four for US market and one for Italian market); 
farm tractor, freight locomotive, generation of electricity in steam-powered 
and internal-combustion plants in the United States of America. In fact, US 
national system of innovation is a vital case study that shows general 
patterns of the evolution of technology across advanced market economies 
(Steil et al., 2002). Sources of data for these technologies are tables published 
by Sahal (1981, pp.319-350, originally sourced from trade literature; cf. also 
Coccia, 2018). Note that data from the earliest years and also the war years 
are sparse for some technologies. In addition, this study also considers data 
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of a main Information and Communication Technology (ICT): smartphone. 
Data of smartphone here are originally sourced from trade literature of 
Italian market, one of the largest economy in Europe (Punto Cellulare, 
2018). Historical data of these technologies are important to verify 
applicability, effectiveness, generality, precision, correctness and 
robustness of the proposed model of technological evolution.   

 
5.2. Measures 
Functional Measures of Technology (FMT) are the technical 

characteristics of innovations and their change can indicate the evolution of 
technology over the course of time based on major and minor innovations, 
such as fuel-consumption efficiency of vehicles (cf., Sahal, 1981, pp.27-29). 
The following FMTs are associated with a main subsystem of technology 
that indicates a parasitic technology P, and a host system H in which the 
parasitic technology P operates and interacts. FMTs per each technology 
seem to be the most appropriate variables to apply the suggested model of 
host-parasitic system for measuring and predicting the evolution of 
technology. Other measures are not considered here because they do not 
provide complete information of technical characteristics of technologies 
under study, such as index of tractor price in relation to price of labor, 
number of locomotive in service, cumulated production quantities, etc.  

Functional Measures of Technologies (FMTs) for farm tractor over 1920-
1968 CE (Common Era) in US market are:  

fuel-consumption efficiency in horsepower-hours indicates the 
technological advances of engine (a parasitic technology P) within farm 
tractors. This FMT represents the dependent variable P in the model [5]. 

mechanical efficiency (ratio of drawbar horsepower to belt or power 
take-off –PTO- horsepower) is a proxy of the technological advances of 
farm tractor (H=Host technology). This FMT represents the explanatory 
variable H in the model [5].  

For freight locomotive, FMTs over 1904-1932 CE in US market are:  
Tractive efforts in pound indicate the technological advances of 

locomotive (Parasitic technology P). This FMT represents the dependent 
variable P in the model [5]. 

Total railroad mileage indicates the evolution of the infrastructure 
system of railroad (Host technology). This FMT represents the explanatory 
variable H in the model [5]. 

For electricity generated by steam-powered plants, FMTs over 1920-1970 
CE in US market are:  

Average fuel-consumption efficiency in kilowatt-hours per pound of 
coal indicates the technological advances of boiler, turbines and electrical 
generator (parasitic technology P of steam-powered plant). This FMT 
represents the dependent variable P in the model [5]. 

Average scale of plant utilization (the ratio of net production of steam-
powered electrical energy in millions of kilowatt-hours to number of steam 
powered plants) indicates a proxy of technological advances of the steam-
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powered plant (Host technology). This FMT represents the explanatory 
variable H in the model [5].  

For electricity generated by internal-combustion plants, FMTs over 1920-
1970 CE in US market are:  

Average fuel-consumption efficiency in kilowatt-hours per cubic foot of 
gas indicates the technological advances of boiler, turbines and electrical 
generator (a parasitic subsystem of internal combustion plant). This FMT 
represents the dependent variable P in the model [5]. 

Average scale of plant utilization (the ratio of net production of electrical 
energy by internal-combustion type plants in millions of kilowatt-hours to 
total number of these plants) indicates a proxy of technological advances of 
plants with internal-combustion technology. This FMT represents the 
explanatory variable of the host technology H in the model [5]. 

This study also considers smartphone technologies by using a sample of 
N=738 models of famous brands (Apple, ASUS, HTC, Huawei, LG 
Electronics, Motorola, Nokia, Samsung, Sony, ZTE, etc.) from 2008 to 2018, 
sold in Italy during the years 2012 and 2018. Functional Measures of 
Technological characteristics (FMTs) in smartphone technology over 2008-
2018 CE in Italian market are given by: 

Main Camera in megapixel (Mpx) indicates the technological advances 
of camera technology (Parasitic technology P) in smartphone. This FMT 
represents the dependent variable P in the model [5]. 

Processor GHz (Giga Hertz, GHz) indicates a proxy of the technological 
advances of overall smartphone technology (Host technology H). This FMT 
represents the explanatory variable H in the model [5]. 

In addition, in order to assess the multidimensional process of 
interaction between host technology and parasitic technologies, this case 
study of smartphone technology also considers further FMTs over 2008-
2018 period given by: 

Display resolution in total pixels 5= display size row × display size 
column  

Second Camera Mpx (megapixel) 
Memory Gb (Giga byte)  
RAM Gb (Giga byte) 
Battery mAh (milliAmpere hour)  
 
5.3. Model and data analysis procedure 
Model [5] of the technological evolution is specified as follows: 
 

log Pt = log a + B log Ht + ut       (6)  
 
a is a constant; log has base e= 2.7182818; t=time; ut = error term.  

5 The display resolution is usually quoted as width × height, with the units in pixels: for 
example, "1024 × 768" means the width is 1024 pixels and the height is 768 pixels. Total 
pixels= 1024 × 768=786,432 pixels.  
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Ptwill be the extent of technological advances of technology P (a 

parasitic subsystem of the Host technology H at time t).  
Htwill be the extent of technological advances of host technology H in 

which the parasitic subsystem of technology P interacts at time t; H 
technology as a complex system is the driving force of the evolutionary 
growth of overall interrelated subsystems of technology Pi (i=1, . . . , n).  

The multidimensionality is considered with the following model: 
log P1t = log a + B1 log Ht + B2 log P2t +Bi log Pit +…+Bm log Pmt +εt [7]  
Ht=Host technology; Pit= Parasitic technology i (i=1, …, n); t=time; εt = 

error term.  
The equations of simple regression [6] and multiple regression [7] are 

estimated using the Ordinary Least Squares method. Statistical analyses are 
performed with the Statistics Software SPSS version 24. 

 
6. Case studies of the evolution of technology in 

agriculture, rail transport, electricity generation and 
smartphone 

6.1. Results of the evolution of farm tractor technology (1920-1968 
period in US market) 

Table 3 shows that the evolutionary coefficient of growth of farm tractor 
technology, from model [6], is B = 1.74, i.e., B >1:the subsystem technology 
of engine (P) has a disproportionate technological growth in comparison 
with overall farm tractor (H). This coefficient indicates a high grade of the 
evolution of technology P and a development of the whole system of farm 
tractor technology (cf., Figure 1).  

 
Table 3. Estimated relationship for farm tractor technology (1920-1968 period in US 
market) 

Note: ***Coefficient β is significant at 1‰; Explanatory variable is log mechanical efficiency ratio of 
drawbar horsepower to belt (technological advances of farm tractor –Host technology H) 

 
 

Dependent variable:   log fuel consumption efficiency in horsepower hours (P=technological 
advances of engine within tractor) 

 
Constant 
α 
(St. Err.) 

Evolutionary 
coefficient 
β=B 
(St. Err.) 

R2 adj. 
(St. Err. 
of the Estimate) 

F 
(sign.) 

Farm tractor  −5.14*** 
(0.45) 

1.74*** 
(0.11) 

0.85 
(0.10) 

256.44 
(0.001) 
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Figure 1. Trend and estimated relationship of the evolution of farm tractor technology 

(1920-1968 period in US market) 
 
This result confirms the study by Sahal (1981) that the rapid evolution of 

farm tractor technology is due to numerous incremental and radical 
innovations over time, such as the diesel-powered track-type tractor in 
1931, low-pressure rubber tires in 1934 and the introduction of remote 
control in 1947 that made possible improved control of large drawn 
implements. The development of the continuous running power takeoff 
(PTO) also in 1947 allowed the tractor’s clutch to be disengaged without 
impeding power to the implements. Moreover, in 1950 it is introduced the 
1000-rpm PTO for transmission of higher power, whereas in 1953 power 
steering was applied in new generations of tractor. In addition, the PTO 
horsepower of tractor has more than doubled from about 27hp to 69hp over 
1948-1968; finally, dual rear wheels in 1965, auxiliary front-wheel drive and 
four-wheel drive in 1967 have improved the overall technological 
performance of tractor (Sahal, 1981, p. 132ff). These radical and incremental 
innovations have supported the accelerated evolution of farm tractor 
technology over time as confirmed by the statistical evidence here with the 
coefficient of evolutionary growth B>1 (grade 3=high in table 2).  

 
6.2. Results of the evolution of freight locomotive technology 

(1904–1932 period in US market) 
Table 4 shows that the evolutionary coefficient of freight locomotive 

technology is B = 1.89, i.e., B> 1: this coefficient of growth indicates a 
process of development of freight locomotive technology P in the host 
system of rail transportation (see, Figure 2).   

 
 

 M. Coccia, JEST, 6(3), 2019, p.173-209. 

190 

 



Journal of Economic and Social Thought 
Table 4. Estimated relationship for freight locomotive technology (1904–1932 period in 
US market) 

Note: ***Coefficient β is significant at 1‰; Explanatory variable is log Total railroad mileage 
(technological advances of the infrastructure –Host technology H)  

 
This development of freight locomotive technology can be explained 

with a number of technological advances, such as the introduction of 
compound engine in 1906 that improved tractive effort (Sahal, 1981). In 
1912 the first mechanical stoker to use steam-jet overfeed system of coal 
distribution was perfected. In 1913, another technological advance was the 
substitution of pneumatically operated power reverse gear for the hand 
lever. In 1916, the introduction of the unit drawbar and radial buffer 
eliminated the need for a safety chain in coupling the engine and tender 
together. Further technological advances are due to the adoption of cast-
steel frames integral with the cylinder, the chemical treatment of the 
locomotive boiler water supply and the introduction of roller bearings over 
1930s. In particular, these technical developments reduced the frequency of 
maintenance work in locomotives. Subsequently, the continuous 
modification of steam locomotive with reciprocating engine has led to 
diesel-electric locomotive by the mid-1940s (Sahal, 1981, p.154ff). These and 
other technological developments have supported the accelerated evolution 
of freight locomotive technology over time as confirmed by the coefficient 
of evolutionary growth B>1 calculated in table 4. 

 

 
Figure 2. Trend and estimated relationship of the evolution of freight locomotive 

technology (1904–1932 period in US market) 

Dependent variable: log Tractive efforts in pound (P=technological advances of locomotive) 

 
Constant 

α 
(St. Err.) 

Evolutionary 
coefficient 

β=B 
(St. Err.) 

R2 adj. 
(St. Err. 

of the Estimate) 

F 
(sign.) 

Locomotive technology  −13.87*** 
(1.48) 

1.89*** 
(0.12) 

0.91 
(0.07) 

270.15 
(0.001) 
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6.3. Results of the evolution of electricity generation technology 

(1920-1970 period in US market) 
Electricity is generated in different types of plants: 1. Steam-powered 

plants, which may be either fossil fueled or nuclear plant; 2. Internal-
combustion plants, including gas turbines and diesel engines; 3. 
hydroelectric plants. This study focuses on 1st and 2nd type of plants. 
Table 5 shows that the steam-powered electricity, with plants that are fossil 
(coal) fueled, has B = 0.23, i.e., B < 1 (see also Figure 3).  

 
Table 5. Estimated relationship for steam-powered plants that are fossil (coal) fueled 
(1920-1970 period in US market) 

Note: ***Coefficient β is significant at 1‰; Explanatory variable is log Average scale of steam-powered 
plants (Host technology H)  

 

 
Figure 3. Trend and estimated relationship of the evolution of steam-powered electricity 

with plants that are fossil (coal) fueled (1920-1970 period in US market) 
 

Table 6 shows results of electricity generation with internal-combustion 
plants having gas turbines; the coefficient of evolutionary growth of this 
technology is B = 0.35, i.e., B < 1. In short, the evolution of technology in the 
generation of electricity both in steam-powered plants and internal-
combustion plants is low and driven by an evolutionary route of 
underdevelopment over the course of time (see, Figure 3 and 4).  

 

Dependent variable:   log  Average fuel consumption efficiency in kwh per pound of coal 
(P=technological advances of turbine and various equipment) 

 
Constant 

α 
(St. Err.) 

Evolutionary 
Coefficient β=B 

(St. Err.) 

R2 adj. 
(St. Err. 
of the 

Estimate) 

F 
(sign.) 

Turbine and various 
equipment ( coal fueled)  

−1.35*** 
(0.04) 

0.23*** 
(0.01) 

0.93 
(0.09) 

675.12 
(0.001) 
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Table 6. Estimated relationship for internal-combustion plants with gas turbines (1920-
1970 period in US market) 

Note: ***Coefficient β is significant at 1‰; Explanatory variable is log Average scale of internal-
combustion plants (Host technology H) 

 
In general, the evolution of technology in the generation of electricity is 

associated with available natural resources (fossil and gas), the increase in 
steam pressure and temperature made possible by advances in metallurgy, 
the use of double reheat units and improvements in the integrated system 
man-machine interactions to optimize the operation of overall plants, etc. 
(cf., Sahal, 1981, pp.183ff). Low rate of technological evolution in the 
electricity generation technology (underdevelopment with B<1 in tables 5-
6) can be due to: “the deterioration in the quality of fuel and of constraints 
imposed by environmental conditions…. other main reasons: First, 
increased steam temperature requires the use of more costly alloys, which 
in turn entail maintenance problems of their own…. Thus there has been a 
decrease in the maximum throttle temperature from 1200 °F in 1962, to 
about 1000 °F in 1970. Second, there has been lack of motivation to increase 
the efficiency in the use of gas in both steam-powered and internal-
combustion plants because of the artificially low price of fuel due to 
Federal Power Commission’s wellhead gas price regulation. Finally, … 
there has been a slowdown in generation efficiency due to heavy use of 
low-efficiency gas turbines necessitated by delays in the construction of 
nuclear power plant” (Sahal, 1981, p.184).  

 

 
Figure 4. Trend and estimated relationship of the evolution of internal-combustion plants 

with gas turbines (1920-1970 period in US market) 

Dependent variable:   log Average fuel consumption efficiency in kwh per cubic feet of 
gas (P=technological advances of turbine and various equipment) 

 
Constant 

α 
(St. Err.) 

Evolutionary 
coefficient 

β=B 
(St. Err.) 

R2 adj. 
(St. Err. 
of the 

Estimate) 

F 
(sign.) 

Gas turbine  and various 
equipment 

−2.93*** 
(0.02) 

0.35*** 
(0.02) 

0.81 
(0.14) 

213.63 
(0.001) 
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6.4. Results of the evolution of smartphone technology (2008-2018 

period in Italian market) 
Table 7 shows that the evolutionary coefficient of growth of smartphone 

technology is B = 1.19, i.e., B >1. Technical characteristics of main camera 
(Parasitic technology P) have a disproportionate technological growth in 
comparison with overall smartphone (Host technology H). This coefficient 
indicates a high grade of the evolution of camera technology supporting a 
development of complex system of smartphone technology (cf., Figure 5).  

 
Table 7. Estimated relationship for smartphone technology (2008-2018 period in Italian 
market) 

Note: ***Coefficient β is significant at 1‰; Explanatory variable is log Processor GHz (technological 
advances of smartphone–Host technology H) 

 

 
Figure 5. Trend and estimated relationship of the evolution of main camera in smartphone 

technology (2008-2018 period in Italian market) 
 
 
 
 
 
 

Dependent variable:    log Main Camera in megapixel (P technology)  

 
Constant 

α 
(St. Err.) 

Evolutionary 
coefficient 

β=B 
(St. Err.) 

R2 adj. 
(St. Err. 

of the Estimate) 

F 
(sign.) 

Main Camera 
technology  

2.07*** 
(0.03) 

1.19*** 
(0.04) 

0.97 
(0.18) 

897.483 
(0.001) 
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Table 8. Estimated relationship for the evolution of smartphone technology considering 
multidimensional interaction between host system and subsystems of parasitic technologies 
(log-log model, 2008-2018 period in Italian market) 

Note: Pi=Parasitic technology i=1, …, 6; H=Host technology (smartphone); *** p-value< .001; ** p-value< 
.010; *  p-value< .050 

 
Table 8 shows that the evolutionary pathways of camera technology in 

smartphone is mainly driven by advances of RAM in Gb, memory in Gb 
and display resolution in pixels, as showed by standardized coefficients of 
regression (see, highlighted cell  in the third column of table 8). R2 adjusted 
of the model [7] indicates that about 70% of the variation in megapixels of 
main camera can be attributed (linearly) to predictors indicated in table 8. 
Figure 6 shows that the coevolution of technical characteristics of host 
system and parasitic technologies in smartphone technology. Table 9 
reveals that main camera has a very high coefficient of correlation with 
other parasitic technologies and with processor GHz (a proxy of the 
technical advances of overall smartphone-host technology): in general, 
r>.78 (p-value 0.001), except for battery mAh. This result suggests that the 
evolution of smartphone technology is due to coevolutionary processes of 
different parasitic technologies in a complex system of technology.   

 

Dependent variable:  log Main Camera in megapixel (P1 technology) at  t =2008, …, 2018 

Smartphone 
Unstandardized 

Coefficient 
Standardized 

Coefficient 
t-test 

 
Constant. α 
(St. Err.) 

−1.19 
(0.65) 

 −1.83 

Predictors 
⇓ 

   

Coefficient  log P2 technology 
2nd Camera  megapixel 
(St. Err.) 

0.09*** 
 

(0.02) 
0.17 

4.65 

Coefficient  log P3 technology 
Resolution Display in pixels 
(St. Err.) 

0.14*** 
 

(0.03) 
0.19 

4.12 

Coefficient  log P4 technology 
RAM Gb 
(St. Err.) 

0.20*** 
 

(0.05) 
0.24 

3.84 

Coefficient  log P5 technology 
Memory Gb 
(St. Err.) 

0.12*** 
 

(0.03) 
0.20 

4.38 

Coefficient  log P6 technology 
 Battery mAh 
(St. Err.) 

0.14* 
 

(0.07) 
0.07 

1.97 

Coefficient  log H technology 
 Processor GHz 
(St. Err.) 

0.12 
 

(0.08) 
0.06 

1.46 

R2 adj. adj. 
(St. Err. of the Estimate) 

0.70 
(0.29) 

 
 

F 
(sign.) 

233.81 
(0.001) 
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Figure 6. Coevolution of technical characteristics of host and subsystem parasitic 

technologies in smartphone (2008-2018 period). 
Note: The Functional Measures of Technology i in t (FMTi, t) of y-axis are systematized in a comparable 
framework by applying the following standardization formula for the technology i in t=time: 𝑍𝑍(𝐹𝐹𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖 =

𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

; where: Z(FMT) it= standardized FMTit  (Functional Measures of Technology i at t); FMTit= Functional 
Measures of Technologyi at the year t; μt= arithmetic mean of the FMT over t; σt  = standard deviation of the FMT 

over t. Remark: FMTit is negative when the raw score is below the arithmetic mean, positive when it is above. A 
zero value of FMTit indicates that the raw value is equal to the arithmetic mean. 

 
Table 9. Correlation between advances of technical characteristics of main camera, host 
and other parasitic technologies in smartphone (2008-2018 period) 

  HOST 
Log 

Processor 
GHz 

Parasitic 2 
Log 

Second 
Camera MP 

Parasitic 3 
Log 

Resolution 
Pixels 

Parasitic 4 
Log 

RAM 
Gb 

Parasitic 5 
Log 

Memory Gb 

Parasitic 6 
Log 

Battery 
MAh 

Log  
Parasitic 1 
Main 
Camera 
Mpx 

Pearson 
Correlation .985** .903** .929** .933** .781** .295 

Sig.  
(2-tailed) 

.001 .001 .001 .001 .001 .072 

N  29 25 33 15 30 38 
Note: **. Correlation is significant at the 0.01 level (2-tailed). N=technical improvements from 2008 to 
2018 

 
In particular, the rapid evolution of smartphone technology (B>1 in table 

7) is due to numerous innovations over time, such as Bluetooth for wireless 
communication in 2002, touchscreen in 2007, app store and android market 
in 2008 that have generated many parasitic technologies given by software 
applications for mobile devices, Siri and fingerprint scanners in 2011, 4G in 
2012, waterproof phone in 2013, dual camera in 2014, 4K HDR resolution 
display in 2015, modular phones in 2016, and facial recognition in 2017, etc. 
This finding indicates that the long-run evolution of smartphone 
technology depends on the behavior and coevolution of inter-related 
parasitic technologies (cf., Coccia, 2018). Moreover, learning effects, based 
on learning by doing and learning by using, are fostering the assimilation 
of new technology in smartphone devices from many parasitic technologies 
to support the evolutionary pathway of overall complex system of 
technology (Cohen & Levinthal, 1990). Sahal (1981, p.82, original italics) 
argues that: “the role of learning in the evolution of a technique has 
profound implications for its diffusion as well”. In the context of 
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smartphone technology, Watanabe et al., (2012, pp.1293-1294) argue that 
learning effects in ICTs can be the sources of its self-propagating 
development of technology, acquiring new functionality from digital 
industry, wireless communications and software applications (cf., 
Carranza, 2010; Coccia, 2018).  

Overall, then, this statistical analysis shows that the proposed models 
here can assist in assessing explaining the evolution of different 
technologies based on interaction between host system and its subsystem of 
technology that guides evolutionary pathways and technological 
diversification over time and space (cf., Coccia, 2018). 

 
7. Discussionand conclusion 
Many characteristics in the nature and evolution of technology are 

hardly known. Scientists should open the debate regarding the nature and 
types of interaction between host technologies and its subsystem 
technologies that may explain and generalize aspects of the evolution of 
technology and technical change in society (cf., Coccia, 2018; Pistorius & 
Utterback, 1997; Sandén & Hillman, 2011). Some scholars argue that 
technologies and technological change display numerous life-like features, 
suggesting a deep connection with biological evolution 6 . The analogy 
between biological processes and technological evolution is a source of 
ideas because biological evolution has been studied in-depth and provides 
a logical structure of scientific inquiry for the evolution of technology. 

This study applies a broad analogy between evolutionary ecology of 
parasites and technological evolution, within a theoretical framework of 
Generalized Darwinism, to propose a theory to measure, assess and predict 
the evolutionary pathways of technology. The evolution of technology here 
is based on an assumption that technologies are complex systems that 
interact in a nonsimple way with other technologies and inter-related 
subsystems of technology. In particular, this study analyses the evolution 
of technology considering the interaction between host technology (system) 
and parasitic technology (subsystem). The approach here is operationalized 
with a simple model that contains only two parameters and provides the 
coefficient of evolutionary growth, which is useful to measure and assess 
the effect that host technology can have on parasitic technology's growth 
rate, predicting which technologies are likely to evolve rapidly. The 
technometrics here suggests three simple grades of the evolution of 
technology, based on the coefficient of evolutionary growth, according to 
host technology H can enhance or inhibit the growth rate of parasitic 
technology P: B<1 (underdevelopment of P), B=1 (growth of P) and B>1 
(development of P and of the whole system of technology). The proposed 
technometrics, tested in five example technologies, provides consistent 

6 Basalla, 1988; Coccia, 2018; Erwin & Krakauer, 2004; Jacob, 1977; Kreindler et al., 2014; 
Kyriazis, 2015; Nelson & Winter,1982; Solé et al., 2011, 2013; Wagner & Rosen, 2014; 
Valverde et al., 2007; Ziman, 2000.  
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results of the evolution of technologies with empirical data and the history 
of specific technologies under study.   

In general, the evolution of technology has universals based on 
mutualistic and symbiotic interaction, similar to many phenomena in 
nature and society. In fact, Szathmáry (2011) argues thatbenefits of 
cooperation can drive the evolution of a system that supports cooperative 
behavior. Technological interaction based on cooperation between 
technologies (e.g., mutualism and symbiosis) must pay off in the long run, 
even if it is immediately costly to cooperative technologies due to switching 
costs for adapting to evolving host technology (e.g., the transition of 
headphones from wired to wireless technology with new generations of 
electronic devices without jack) . 

Coefficient of evolutionary growth B here is a metric for classifying the 
modes of technological interaction and for predicting the long-term 
development of complex system of technology, namely:   

Coefficient B<1 suggests low interaction between host system and its 
subsystem of technology (technological parasitism), whereas B>1 suggests a 
high interaction between host system and subsystem of technology 
(technological symbiosis).  

Technology having an accelerated growth of its parasitic technologies 
(B>1) advances rapidly, whereas technology with low growth of its 
parasitic technologies (B<1) enhances slowly. 

High development of technology is governed by a process of 
disproportionate growth in its parasitic technologies (B>1), such as the 
technological development of farm tractor, smartphone and freight 
locomotive technologies described here.  

Evolution of technology is inhibited when its parasitic subsystem P has 
low changes in relation to changes of host technology (B<1), generating 
underdevelopment of the whole system of technology over the course of 
time (e.g., the generation of electricity in steam-powered and internal-
combustion plants).  

Long-run evolution of a technology depends on the behavior and 
evolution of associated parasitic technologies. To put it differently, long-
run evolution of a specific technology is enhanced by the integration of two 
or more parasitic/symbiotic technologies that generate co-evolution of the 
overall complex system of technology.  

Overall, then, one of the most important findings of the proposed 
theoretical framework here is two general properties of the evolution of 
technology as a complex system:  

(a)  the disproportionate growth of technological subsystems in a host 
technology generates the development of overall complex system of 
technology  

(b)  Interaction between technologies can generate coevolution within 
complex system of technology with the shift from technological parasitism 
(indicated with B<1) to technological symbiosis (B>1) over the course of 
time. This transition dynamics is due to natural selection of technical 
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characteristics during the interaction between technologies that reduces 
negative effects and favors positive effects directed to an evolution of 
reciprocal adaptations of technologies in complex systems of technology 
over time and space (cf., property of mutual benefaction by Coccia, 2018). 

The finding of this study could aid policymakers and managers to 
design best practices of technology policy and management of technology 
for supporting development of new technology, and as a consequence, 
industrial and economic change in society. One of the main limitations of 
this approach is the lack of useful data in sufficient quality for different 
technologies. Future efforts in this research field require a gathering of 
substantial amount of technological characteristics for different 
technologies to provide further empirical evidence of the evolutionary 
pathways of technology over time and space. Moreover, future study will 
be also directed to support the theory here with practical policy and 
management implications to guide funding for R&D towards specific 
technologies (having B>1) that are likely to evolve rapidly in society. 

Overall, then, the idea presented in the study here to measure, analyze 
and predict evolution of technology is adequate in some cases but less in 
others because of the diversity of technological innovations and their 
relationships in different complex systems and socioeconomic 
environments. Nevertheless, the broad analogy between evolutionary 
ecology of parasites and technological evolution, based on Generalized 
Darwinism, keeps its validity here in explaining and predicting general 
evolutionary pathways of technology. In particular, the proposed approach 
here based on the ecology-like interaction between technologies—may lay 
the foundation for development of more sophisticated concepts and 
theoretical frameworks in technometrics and technological forecasting. As a 
matter of fact, these findings here can encourage further theoretical and 
empirical exploration in the terra incognita of the interaction between 
different technologies during economic change to measure, explain and 
predict the aspects of the evolution of technology. To conclude, this study 
constitutes an initial significant step in measuring the evolution of 
technology considering the interaction between technologies in complex 
systems to predict the long-run behavior of technology in society. 
However, the identification of a comprehensive technometrics for 
technological forecasting in different domains of technology, having a 
technological diversification in markets, is a non-trivial exercise. In fact, 
Wright (1997, p. 1562) properly claims that: “In the world of technological 
change, bounded rationality is the rule.”  
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Appendix 
 

 

log 
Fuel 

consumption 
efficiency in 
horsepower 

hours 
(Engine of 
Tractor P) 

log 
Mechanical 

efficiency ratio of 
drawbar horsepower to 

belt 
(Tractor efficiency H) 

log 
Tractive 

efforts in pound 
(Locomotive power 

P) 

log 
Total 

railroad 
mileage 

(Infrastructure for 
locomotive H) 

Years 44 44 29 29 
Mean 2.13 4.19 10.43 12.86 
Std. 
Deviation 

0.27 0.146 0.22 0.11 

Skewness -0.76 -0.68 -0.21 -1.04 
Kurtosis -0.83 -0.56 -1.19 -0.06 

 

log 
Average fuel 
consumption 

efficiency in kwh 
per pound of coal 

(turbine and 
various 

equipment in 
steam-powered 

plants P) 

log 
Average scale of steam-

powered 
Plants 

H 

log 
Average fuel 
consumption 

efficiency in kwh 
per cubic feet of gas 
(turbine and various 

equipment in 
internal-combustion 

plants P) 

log 
Average scale of 

internal-combustion 
plants 

H 

Years 51 51 51 51 
Mean -0.25 4.85 -2.75 0.51 
Std. 
Deviation 

0.34 1.43 0.33 0.85 

Skewness -0.67 -0.17 -0.67 0.02 
Kurtosis -0.09 -1.26 0.04 -1.64 

 

log 
Main Camera 
megapixel in 

smartphone P1 

log 
Processor Giga Hertz in 

smartphone H 

log 
Second Camera 

megapixel in 
smartphone P2 

log 
Memory Giga byte in 

smartphone P3 

Years 10 10 10 10 
Mean 2.54 0.13 1.43 -0.31 
Std. 
Deviation 

2.80 0.41 1.39 -1.09 

Skewness -1.52 -1.38 -0.13 0.84 
Kurtosis 3.05 1.65 -0.88 0.51 

 

log 
RAM Giga byte 

in smartphone P4 

log 
Battery milliAmpere 

hour in smartphone P5 

log 
Display resolution 

total pixels in 
smartphone P6 

 

Years 10 10 10  
Mean 0.30 7.64 13.12  
Std. 
Deviation 

0.41 7.77 13.33  

Skewness -0.16 -6.94 -0.50  
Kurtosis -0.65 64.64 -0.55  

Note: P=parasitic technology; H= Host technology. Numbers x in table are in natural logarithmic and 
have to be transformed with ex to obtain absolute value 
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