Shapley Value Regression and the Resolution of Multicollinearity

By Sudhanshu K. MISHRA †

Abstract. Multicollinearity in empirical data violates the assumption of independence among the regressors in a linear regression model that often leads to failure in rejecting a false null hypothesis. It also may assign wrong sign to coefficients. Shapley value regression is perhaps the best methods to combat this problem. The present paper simplifies the algorithm of Shapley value decomposition of R^2 and develops a Fortran computer program that executes it. It also retrieve regression coefficients from the Shapley value. However, Shapley value regression becomes increasingly impracticable as the number of regressor variables exceeds 10, although, in practice, a good regression model may not have more than ten regressors.

Keywords. Multicollinearity, Shapley value, regression, computer program, Fortran.

JEL. C63, C71.

1. Introduction

In the econometric literature multicollinearity is defined as the incidence of high degree of correlation among some or all regressor variables. Strong multicollinearity has deleterious effects on the confidence intervals of linear regression coefficients (β in the linear regression model $y=X\beta+u$). Although it does not affect the explanatory power (R^2) of the regressors or unbiasedness of the estimated coefficients associated with them, it does inflate their standard error of estimate rendering test of hypothesis misleading or paradoxical, often such that although R^2 could be very high, individual coefficients may all have poor Student’s t-values. Thus, strong multicollinearity may lead to failure in rejecting a false null hypothesis of ineffectiveness of the regressor variable to the regressand variable (type II error). Very frequently, it also affects the sign of the regression coefficients. However, it has been pointed out that the incidence of high degree of correlation (measured in terms of a large condition number; Belsley et al., 1980) among some or all regressor variables alone (unsupported by large variance of error in the regressand variable, y) has little effect on the precision of regression coefficients. Large condition number coupled with a large variance of error in the regressand variable destabilizes the regression estimator; either of the two in isolation cannot cause much harm, although the condition number is relatively more potent in determining the stability of estimated regression coefficients (Mishra, 2004a).

†North-Eastern Hill University, Shillong, 91 - 793022, New Delhi, India.
☎ 918130397754
✉ mishrasknehu@hotmail.com
2. Statistical resolution of multicollinearity problem

Some econometricians suggest that the problem of multicollinearity is a data problem – the data do not contain enough information to disentangle the effects of individual regressor variables on the regressand variable – and therefore, the solution of the problem lay in getting more data with enough variability. However, since it is often hard or impossible to obtain more informative data, and the incidence of a high degree of multicollinearity is frequently met with in empirical studies rendering the estimated regression coefficients either unreliable or misleading (sign-wise) or both, the resolution of multicollinearity problem has attracted intense efforts leading to development of many methods (mostly statistical in nature) that appear to contain the problem with the given data set. A compact but nearly exhaustive survey of such methods (e.g. (i) ordinary ridge regression, (ii) restricted ridge regression, (iii) the family of Liu estimators, (iv) restricted Liu estimators, (v) generalized maximum entropy estimator, (vi) maximum entropy Leuven estimators, (vii) modular max entropy Leuven estimator, etc.) is available (Mishra, 2004b). Works of Wu (2009), Macedo et al. (2010), Chen (2012), Özkale (2012), York (2012), Özkale (2014), Ročková & George (2014), Huang et al. (2015), Gómez et al. (2016) are some recent efforts in this direction. These methods modify the method of statistical estimation of the regression model and a few of them need some information from the analyst.

3. Shapley value regression

This is an entirely different strategy to assess the contribution of regressor variables to the regressand variable. It owes its origin in the theory of cooperative games (Shapley, 1953). The value of R^2 obtained by fitting a linear regression model $y=X\beta+u$ is considered as the value of a cooperative game played by X (whose members, $x_j \in X; j=1, m$, work in a coalition) against y (explaining it). The analyst does not have enough information to disentangle the contributions made by the individual members $x_j \in X; j=1, m$, but only their joint contribution (R^2) is known. The Shapley value decomposition imputes the most likely contribution of each individual $x_j \in X; j=1, m,$ to R^2.

4. An algorithm to impute the contribution of individual variables to Shapley value

Let there be m number of regressor variables in the model $y=X\beta+u$. Let $X(p, r)$ be the r-membered subset of X in which the pth regressor appears and $X(q, r)$ be the r-membered subset of X in which the pth regressor does not appear. Further, let $R^2(p, r)$ be the R^2 obtained by regression of y on $X(p, r)$ and $R^2(q, r)$ be the R^2 obtained by regression of y on $X(q, r)$. Then, the share of the regressor variable p (that is $x_p \in X$) is given by

$$S(p) = \frac{(1/m)\sum_{r=1}^{m} \left\{ \sum_{c=1}^{k} [R^2(p, r) - R^2(q, r-1)] \right\}}{k}.$$

Moreover, $R^2(q, 0) = 0$. Here k is the number of cases in which the evaluation in [.] was carried out. The sum of all $S(p)$ for $p=1, m$ (that is, $\sum_{p=1}^{m} S(p)$) is the R^2 of $y=X\beta+u$: (all $x_j \in X$) or the total value of the game $= R^2 = \sum_{p=1}^{m} S(p) = \frac{(1/m)\sum_{r=1}^{m} \left\{ \sum_{c=1}^{k} [R^2(p, r) - R^2(q, r-1)] \right\}}{k}$.
5. Retrieval of regression coefficients from Shapley value

As explained by Lipovetsky (2006), we may retrieve standardized regression coefficients, denoted by α. Denoting pair-wise correlation matrix among regressors by S, pair-wise correlation vector between regressand and regressors by T and Shapley value vector by V, we formulate a quadratic programming problem to minimize $f(\alpha)$ given by

$$f(\alpha) = \sum_{j=1}^{m} (\alpha_j (2T - S\alpha)_j - V_j)^2.$$

Optimization may be done by any suitable method. Further, regular or non-standardized (unit and scale retaining) regression coefficients may be obtained by

$$\beta_j = \alpha_j (\sigma(y) / \sigma(x_j)),$$

where $\sigma(y)$ and $\sigma(x_j)$ are standard deviations of y and x_j, respectively. Further, the regression constant may be computed by the relationship $\beta_0 = \bar{y} - \sum_{j=1}^{m} \beta_j \bar{x}_j$ in which \bar{y} and \bar{x}_j are arithmetic mean of y and x_j, respectively.

6. A numerical Example to impute Shapley value

Table-1 presents a dataset (available in Arumairajan & Wijekoon, 2013) of y and four regressor variables x_1 through x_4. The regression model is $y = X\beta + u$. Since the total of percentage weight of different chemicals in the composition is close to 100 for each observation (replicate), the regression model based on this dataset would suffer from a high multicollinearity problem.

The ordinary least squares estimation of the model $y = X\beta + u$ provides:

$$\hat{Y} = 62.405 + 1.551 x_1 + 0.510 x_2 + 0.102 x_3 - 0.144 x_4 ; R^2 = 0.982$$

The details of regression analysis on this dataset are presented in Table-2. As it is indicated in Table-2, in spite of a large value of $R^2(0.982)$, the regression coefficients associated with x_2, x_3 and x_4 are statistically insignificant (due to inflated standard error of estimate). The regression coefficient associated with x_1 is poorly significant (different from zero) at 7.1% level. Interestingly, the regression coefficient associated with x_4 is negative (although statistically insignificant). A large value of R^2 suggests that the chemicals in the composition of cement explain the evolution of heat in setting, but none of the chemicals, individually, contribute significantly to the said evolution of heat. This is paradoxical. Also, the negative contribution of x_4 (although statistically insignificant), goes against the chemical science. This example amply suggests that strong multicollinearity mars the scientific validity of the findings of regression analysis.

Table 1. The Portland Cement Dataset (cf. Woods, Steinour and Starke, 1932)

<table>
<thead>
<tr>
<th>s1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>78.5</td>
<td>74.3</td>
<td>104.3</td>
<td>87.6</td>
<td>95.9</td>
<td>109.2</td>
<td>102.7</td>
<td>72.5</td>
<td>93.1</td>
<td>115.9</td>
<td>83.8</td>
<td>113.3</td>
<td>109.4</td>
</tr>
<tr>
<td>x_1</td>
<td>7</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>1</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>26</td>
<td>29</td>
<td>56</td>
<td>31</td>
<td>52</td>
<td>55</td>
<td>71</td>
<td>31</td>
<td>54</td>
<td>47</td>
<td>40</td>
<td>66</td>
<td>68</td>
</tr>
<tr>
<td>x_3</td>
<td>6</td>
<td>15</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>17</td>
<td>22</td>
<td>18</td>
<td>4</td>
<td>23</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>x_4</td>
<td>60</td>
<td>52</td>
<td>20</td>
<td>47</td>
<td>33</td>
<td>22</td>
<td>6</td>
<td>44</td>
<td>22</td>
<td>26</td>
<td>34</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
<td>97</td>
<td>95</td>
<td>97</td>
<td>98</td>
<td>97</td>
<td>97</td>
<td>98</td>
<td>96</td>
<td>98</td>
<td>96</td>
<td>98</td>
<td>98</td>
</tr>
</tbody>
</table>

Variables: $x_1 = 3CaO.Al_2O_3$ (% weight of tricalcium aluminate); $x_2 = 3CaO.SiO_2$ (% weight of tricalcium silicate); $x_3 = 4CaO.Al_2O_3.Fe_2O_3$ (% weight of tetracalcium alumino ferrite); $x_4 = 2CaO.SiO_2$ (% weight of beta-dicalcium silicate); $y =$ heat (calories per gram of cement) evolved while the sample was setting for 180 days of curing. Total is the sum of x_1 through x_4.

Table 2. Summary of Regression Analysis of Portland Cement Dataset

<table>
<thead>
<tr>
<th>Regressors</th>
<th>β</th>
<th>Std Error</th>
<th>Std. coeff.</th>
<th>t-value</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>62.405</td>
<td>70.071</td>
<td>-0.891</td>
<td>0.399</td>
<td></td>
</tr>
<tr>
<td>x₁</td>
<td>1.551</td>
<td>0.745</td>
<td>0.607</td>
<td>2.083</td>
<td>0.071</td>
</tr>
<tr>
<td>x₂</td>
<td>0.510</td>
<td>0.724</td>
<td>0.528</td>
<td>0.705</td>
<td>0.501</td>
</tr>
<tr>
<td>x₃</td>
<td>0.102</td>
<td>0.755</td>
<td>0.043</td>
<td>0.135</td>
<td>0.896</td>
</tr>
<tr>
<td>x₄</td>
<td>-0.144</td>
<td>0.709</td>
<td>-0.160</td>
<td>-0.203</td>
<td>0.844</td>
</tr>
</tbody>
</table>

7. Can partial correlation ameliorate the multicollinearity problem?

Partial correlation between two variables y and xₚ measures the correlation between the residuals \(u_{yz} \) (\(u_{yz} = y - Z\hat{\alpha} \) obtained from the model \(y = Za + u_{yz} \)) and \(u_{pz} \) (\(u_{pz} = x_{zp} - Z\hat{\gamma} \) obtained from the model \(x_{zp} = Z\gamma + u_{pz} \)), where \(Z = X(q, m-1) \) ε X or Z is the subset of X in which \(x_{zp} \) is not there. Thus, the partial correlation coefficient \(r(u_{yz}, u_{pz}) \) measures the correlation between \(y \) and \(x_{zp} \) (both of which are net of the effects of Z). From the dataset under investigation we obtained the partial correlation coefficients, presented in Table-3. A perusal of Table-3 reveals that \(x₃ \) and \(x₄ \) continue to show poor effectiveness to \(y \) and the correlation between \(y \) and \(x₄ \) continues to be negative.

Table 3. Partial Correlation Coefficients of Regressors in the Portland Cement Dataset

<table>
<thead>
<tr>
<th>Regressor</th>
<th>(x₁)</th>
<th>(x₂)</th>
<th>(x₃)</th>
<th>(x₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial r</td>
<td>0.592932583580143</td>
<td>0.241809386003352</td>
<td>0.04768648980471</td>
<td>-0.071648285536613</td>
</tr>
<tr>
<td>Partial r²</td>
<td>0.351569048671023</td>
<td>0.058471779159318</td>
<td>0.002274001318074</td>
<td>0.005133476820336</td>
</tr>
</tbody>
</table>

8. Decomposition of Shapley value of regression analysis

The coalition (regressor variables, X) gains 0.9823756204 (which is equal to the \(R² \) of the regression model \(y=X\beta+u \)). Individual members of the coalition share this gain as detailed out in Table-4.

Table 4. Share of Individual Regressors and the Shapley Value of the Cooperative Game

<table>
<thead>
<tr>
<th>Regressor</th>
<th>(x₁)</th>
<th>(x₂)</th>
<th>(x₃)</th>
<th>(x₄)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share</td>
<td>0.2488891693</td>
<td>0.2912502074</td>
<td>0.1348865135</td>
<td>0.3073497303</td>
<td>0.9823756204</td>
</tr>
<tr>
<td>Share(%)</td>
<td>25.3354</td>
<td>29.6475</td>
<td>13.7306</td>
<td>31.2864</td>
<td>100.00</td>
</tr>
</tbody>
</table>

9. Computational illustration

It will be worthwhile to demonstrate how the values in Table-4 were obtained. Table-5 details out the computation for the share of \(x₁ \). For \(p=1 \), because the computation is done for \(x₁ \), \(r=4 \) (and, hence, \(r-1=3 \)), there is only one entry in \([R²(p,r) - R²(q,r-1)] \) and hence \(k=1 \). Thus, we obtain (0.982376-0.97282)/1 = 0.009556. For \(r=3 \) (and, hence, \(r-1=2 \)) we have 3 entries in \([R²(p,r) - R²(q,r-1)] \) and accordingly \(0.982285+0.982335+0.981281-0.847025-0.68006-0.93529)/3 = 0.161175. Similarly, for \(r=2 \) (and, hence, \(r-1=1 \)) we have 3 entries in \([R²(p,r) - R²(q,r-1)] \) and accordingly \(0.978678+0.548167+0.972471-0.666268-0.285873-0.674542)/3 = 0.290878. For \(r=1 \) (and, hence, \(r-1=0 \)) we have only one entry in \([R²(p,r) - R²(q,r-1)] \) and accordingly we have 0.533948. All the for accumulated and divided by \(m \) gives \((0.009556+0.161175+0.290878+0.533948)/4 = 0.248889 \). This is the expected share of \(x₁ \) in \(R² \) presented in Table-4. For other regressors \((p=2, 3 \text{ and } 4) \) the similar computational scheme is used.

Table 5. Computational details of share of x1 in R^2 of the Portland cement dataset

<table>
<thead>
<tr>
<th>r</th>
<th>$r-1$</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>R^2</th>
<th>K</th>
<th>operation</th>
<th>values</th>
<th>Sum/k</th>
<th>Grand value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td>0.982376</td>
<td></td>
<td>plus</td>
<td>0.982376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>0.97282</td>
<td></td>
<td>minus</td>
<td>-0.97282</td>
<td></td>
<td>0.009556</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.982285</td>
<td>plus</td>
<td>0.982285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.982235</td>
<td>plus</td>
<td>0.982235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.981281</td>
<td>plus</td>
<td>0.981281</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.977025</td>
<td>minus</td>
<td>-0.847025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>0.68006</td>
<td>minus</td>
<td>-0.68006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0.93529</td>
<td>minus</td>
<td>-0.93529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.982285</td>
<td>plus</td>
<td>0.982285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.982235</td>
<td>plus</td>
<td>0.982235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.981281</td>
<td>plus</td>
<td>0.981281</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.847025</td>
<td>minus</td>
<td>-0.847025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>0.68006</td>
<td>minus</td>
<td>-0.68006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0.93529</td>
<td>minus</td>
<td>-0.93529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.533948</td>
<td>plus</td>
<td>0.533948</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.548167</td>
<td>plus</td>
<td>0.548167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.972471</td>
<td>plus</td>
<td>0.972471</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.666268</td>
<td>minus</td>
<td>-0.666268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.285873</td>
<td>minus</td>
<td>-0.285873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.674542</td>
<td>minus</td>
<td>-0.674542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.290878</td>
<td>plus</td>
<td>0.290878</td>
<td>0.248889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now, we proceed to retrieve regression coefficients. The matrix of pair-wise correlation among the regressor variables and the vector of pair-wise correlation between the regressand (y) and regressor variables are presented in Table-6. We optimize the quadratic function $f(\alpha)$, as noted in section 5, by the Host-Parasite Co-evolutionary Algorithm or HPC (Mishra, 2013). To be doubly sure, we have also optimized $f(\alpha)$ by the Differential Evolution (DE) method of global optimization and found the results identical. The DE has been found very effective in difficult nonlinear optimization problems (Mishra, 2007).

Table 6. Pair-wise correlation matrix among regressors (S) and y and regressors (T)

<table>
<thead>
<tr>
<th>Pair-wise correlation matrix among regressor variables (S)</th>
<th>Correlation (y,x) or (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000000000</td>
<td>0.2285794703</td>
</tr>
<tr>
<td>0.2285794703</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>-0.8241337644</td>
<td>-0.1392423761</td>
</tr>
<tr>
<td>-0.2454451074</td>
<td>-0.9729549989</td>
</tr>
</tbody>
</table>

We obtain the minimal value of $f(\alpha) = 0.0000995876416053835$ by HPC (Table-7), which gives $R^2 = 0.9639077953492068$ (squared correlation between y and $\hat{y} = x\alpha$). The minimal value of $f(\alpha) = 0.00009958764160538344$ by DE (Table-8), which gives $R^2 = 0.9639077954654629$ (squared correlation between y and $\hat{y} = x\alpha$). Although, numerically, the R^2 obtained from DE is slightly better than that obtained from HPC (at the 10th place after decimal), for practical purposes HPC and DE both yield (almost) identical R^2, but this R^2 is noticeably smaller than the R^2 obtained from OLS regression (0.982), or the one (0.9823756204) that was decomposed by the Shapley value reported in Table-4. Ideally, the min($f(\alpha)$) should be zero, but it is about 0.0001. Some of the possible reasons might be the effectiveness of an optimizing algorithm and its coding, or the rounding off errors accumulated in course of computation, or near-flatness of a quadratic function at and about its peak. This near-flatness may be dependent on the correlation structure of the dataset being analyzed. But the most potent reason is the fact that the imputed coefficients (α) derived from Shapley value departs from the OLS coefficients (β; this β characterizing min($u'u$) and hence max(R^2)) and, therefore, must always pay in terms of loss in R^2. The $R^2(y, X\alpha)$ must be smaller than $R^2(y, X\beta)$ if $\alpha\neq\beta$. The magnitude of this loss would be dependent on the extent of
departure of α from β. By the way, we also note the negative signs of coefficients associated with x_3 and x_4. This sign would be a serious concern for a scientist.

Table 7. Regression coefficients retrieved from Shapley value by quadratic optimization by HPC

<table>
<thead>
<tr>
<th>Regressors</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized</td>
<td>0.32409026578</td>
<td>0.34345113757</td>
<td>-0.26775995747</td>
<td>-0.34897780483</td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>-5.36219673960</td>
<td>0.82883324530</td>
<td>0.33203669858</td>
<td>-0.6288792954</td>
<td>-0.31364971095</td>
</tr>
</tbody>
</table>

Table 7a. Regression coefficients retrieved from Shapley value by quadratic optimization by DE

<table>
<thead>
<tr>
<th>Regressors</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized</td>
<td>-0.32409026433</td>
<td>0.34345113662</td>
<td>-0.26775995561</td>
<td>-0.34897780345</td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>-5.36219675675</td>
<td>0.82883324160</td>
<td>0.33203669767</td>
<td>-0.628879251</td>
<td>-0.31364970971</td>
</tr>
</tbody>
</table>

10. Some additional observations

In the traditional regression analysis most of the regressors appeared to be redundant, and yet, together, they had exhibited a very high explanatory power. It was paradoxical. The Shapley value regression has explained that such a paradox was due to inability of the traditional regression analysis, which basically assumes independence among the regressors, in dealing with the coalition (cooperative action of the regressors). It is well known that the traditional regression method (ordinary least squares) performs poorly when the Gauss-Markov assumptions are not fulfilled by the data and, therefore, econometricians had in the past invented many techniques such as the generalized least squares (when errors in the dependent variable or the regressand are heteroskedastic or correlated or both), the instrumental variables method (when regressor variables are not fixed, but random), the maximum likelihood estimation (which may be suitable if errors in the regressand are not normally distributed) and so on. These techniques, nevertheless, presume independence among explanatory variables. For dealing with a departure from the assumption of independence among the regressors, several methods (noted in section 2 above) have been proposed, but most of them perform poorly or require additional information (beyond the dataset) from the analyst. Most of those statistical methods for dealing with the multicollinear regressors also are biased estimators. Against these odds, the Shapley value regression needs no additional information and works out the performance individual regressors, which has several desirable properties, such as efficiency, symmetry, linearity, anonymity, marginalism, etc. well discussed in Hart (1989). However, if $\alpha \neq \beta$, it must pay in terms of loss in R^2, since $R^2(y, X\alpha)$ based on the Shapley value must be smaller than $R^2(y, X\beta)$ based on OLS.

11. A computer program in Fortran

The Fortran computer program (HPC based source code) is available which may be compiled by a suitable compiler and run. It needs that the data be stored in a text file (e.g. DATX.TXT) with as many rows as the number of observations (replicates, n), the first column containing the dependent (regressand) variable and the subsequent m (>1) columns containing the regressor variables. No header is to be provided, only numerical data be stored. The program and the data file must be in the same folder (directory). When the program runs, it needs the values of n and m (which may be coded in the program itself if fixed). Then it needs the input file name (e.g. DATX.TXT). It also needs the duration (in seconds) for which the program would run, which may not normally be more than 5 seconds. The program stores the output in a file (e.g. SHAPLEY_RESULTS.TXT). The source code uses
the HPC algorithm. The DE based codes also may be obtained from the author on request.

12. Conclusion
Multicollinearity in empirical data violates the assumption of independence among the explanatory variables in a linear regression model and by inflating the standard error of estimates of the estimated regression coefficients leads to failure in rejecting a false null hypothesis of ineffectiveness of the regressor variable to the regressand variable (type II error). Very frequently, it also affects the sign of the regression coefficients. Shapley value regression is one of the best methods to combat this adversity to empirical analysis. To this end, the present paper has made two contributions, first in simplifying the algorithm to compute the Shapley value (decomposition of R^2 as fair shares to individual regressor variables) and secondly developing a computer program that works it out easily. Yet, it must be mentioned that the Shapley value regression becomes increasingly impracticable as the number of regressor variables exceeds 10 or 12, although, in practice, a good regression model should not have more than ten regressors.

Appendix

SHAPELY REGRESSION FOR MULTICOLLINEARITY

PARAMETER (NMAX=100,MMAX=10)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(NMAX,MMAX),Y(NMAX),XY(MMAX,MMAX),B(MMAX)
DIMENSION X\timesMMAX,MMAX,\timesMMAX,MMAX,YH\timesMMAX,CONTRIB\timesMMAX,Z\timesMMAX
DIMENSION ARRAY\timesMMAX,BARRAY\timesMMAX,BARRAY,\timesMMAX,MMAX,BVECT\timesMMAX
DIMENSION BETA(MMAX),AVX\timesMMAX,SDX\timesMMAX
COMMON /HP/RMAT,RVECT,CONTRIB
CHARACTER *70 INFIL,OFIL,OUTFIL,FINRES
COMMON /DAT/X,Y

!SHAPLEY REGRESSION FOR MULTICOLLINEARITY
PARAMETER (NMAX=100,MMAX=10)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(NMAX,MMAX),Y(NMAX),XY(MMAX,MMAX),B(MMAX)
DIMENSION X\timesMMAX,MMAX,\timesMMAX,MMAX,YH\timesMMAX,CONTRIB\timesMMAX,Z\timesMMAX
DIMENSION ARRAY\timesMMAX,BARRAY\timesMMAX,BARRAY,\timesMMAX,MMAX,BVECT\timesMMAX
DIMENSION BETA(MMAX),AVX\timesMMAX,SDX\timesMMAX
COMMON /HP/RMAT,RVECT,CONTRIB
CHARACTER *70 INFIL,OFIL,OUTFIL,FINRES
COMM...
AM = AM + Y(I)
SD = SD + Y(I)**2
ENDDO

AM = AM/N
AMY = AM
SD = SQRT(SD/N - AM**2)
SDY = SD

DO I=1,N
Y(I) = Y(I) - AM
ENDDO

!----------------------- PRINT DATA Y AND X -----------------------
! DO I=1,N
! WRITE(*,*) Y(I),(X(I,J), J=1,M)
! ENDDO

!------------------------- MAKE VARIANCE-COVARIANCE MATRIX -------------------------
DO J=1,M
XY(J) = 0.D0
ENDO
DO J=1,M
XX(J,J) = 0.D0
ENDO

DO I=1,N
XY(I) = X(I,J) + X(I,J)*Y(I)
ENDO
XY(I) = XY(I)/N

!------------------------- VARIANCE-COVARIANCE MATRIX -------------------------
DO J=1,M
WRITE(*,*) 'VARIANCE-COVARIANCE MATRIX'
DO I=1,M
WRITE(*,1) XYZ(I), (XX(I,J), J=1,M)
ENDDO
WRITE(*,*)'=='

OPEN(14,FILE=OUTFIL)!
STORE XX IN V
CONSTRUCT CORREL MATRIX (RMAT:XX) AND CORREL VECTOR (RVECT: XY)
DO J=1,M
YH(J) = X(J,J)
CALL RSQUARE(YH, YH, N, RM, RSQ)
RVECT(J) = RM
DO J=1,M
Z(J) = X(J,J) + Y(J)*Y(J)
ENDO

! CORRELATION MATRIX AND VECTOR
WRITE('*','(C') CORRELATION MATRIX AND VECTOR
DO J=1,M
WRITE(*,'(5)') RMAT(J,J), (RVECT(J), J=1,M)
ENDDO

CLOSE(14)
WRITE(*,*)'------------------------- CHECKING -------------------------'
CLOSE(14)

DO I=1,M
BARRAY(I) = 0.D0
ENDO
OPEN(14,FILE=OUTFIL)
STORES ALL COMBINATIONS WITH R SQUARE
NCOMBTOT = 0
DO IX=1,M
KX = M - IX + 1
CALL COMB(M, KX, OFIL)
WRITE(*,7) (ARRAY(J), J=1,KX)
CALL REGRESS(XX, XY, ARRAY, RSQ, N, KX)
NCOMBTOT = NCOMBTOT + 1
WRITE(14,*) NSL, KX, (ARRAY(J), J=1,KX), RSQ
CLOSE(14)
CLOSE(14)

ENDO

ENDDO
CLOSE(14)
'PAUSE
'WRITE('*')'END OF COMMAND LANGUAGE'
'WRITE('*')'TOTAL NO. OF REGRESSION =', NCOMBTOT
OPEN(14,FILE=OUTFIL)
TSUMSRQ=0.D0
DO KC=1,M
'WRITE('*')'FEED KC (DESIRED VARIABLE)'
'READ(*) KC
SUMSRQ=0
DO KPP=1,M
NTR1=0
NTR0=0
KP=M-KPP+1
WRITE('*')'--------- COMBINATION= KP,---------------------'
KR=KP-1
!---
SRSQ=0.D0
OPEN(14,FILE=OUTFIL)
DO I=1,NCOMBTOT
READ(14,*)SL,KX,(ARRAY(J),J=1,KX),RSQ
NT=0
DO J=1,KX
IF(KX.EQ.KP.AND.ARRAY(J).EQ.KC) THEN
NT=NT+1
ENDIF
ENDIF
ENDDO
IF(NT.NE.0)THEN
WRITE('*')'(',KX,(ARRAY(JJ),JJ=1,KX),RSQ,')(+)
NTR1=NTR1+1
SRSQ = SRSQ + RSQ ! RSQ TO BE ADDED
ENDIF
NT=0
DO J=1,KX
IF(KX.EQ.KR.AND.ARRAY(J).NE.KC)THEN
NT=NT+1
ENDIF
ENDIF
ENDDO
SRSQ = SRSQ - RSQ ! RSQ TO BE SUBTRACTED
ENDDO
CLOSE(14)
!WRITE('*')'NTR1 & NTR0,SRSQ,MEAN_SRSQ:',NTR1,NTR0,SRSQ,NTR1
SUMSRQ = SUMSRQ + SRSQ/NTR1
ENDDO ! FOR KPP
! WRITE('*')'SUM OF PROPERLY SIGNED RSQ & MEAN =',SUMSRQ,SUMSRQ/M
!
CONTRIB(KC) = SUMSRQ/M
TSUMSRQ = TSUMSRQ + SUMSRQ/M
ENDDO ! FOR KC
WRITE(9,*)(CONTRIB(J),J=1,M)
WRITE(9,*)'TOTAL(JOINT) CONTRIBUTION R_SQ=F(X1,...,XM)=',TSUMSRQ
WRITE(9,*)'NOTE: TOTAL CONTRIBUTION SUMS UP TO 100 PERCENT.'
CALL HOST_PARASITE(M,BETA)
! COMPUTE IMPUTE
D R SQUARED VALUE
WRITE(9,*)'SHAPLEY VALUE BASED REGULAR REGRESSION COEFFS'
WRITE(9,*)'(B(J),J=1,M)
AMM=0.D0
DO J=1,M
B(J)=BETA(J)*SDY/SDX(J)
AMM=AMM+AVX(J)*B(J)
ENDDO
CONSTANT=AVY-AMM
WRITE(9,*) CONSTANT, (B(J),J=1,M)
DO I=1,N
YH(I)=0.D0
DO J=1,M
YH(I)=YH(I)+ X(I,J)*BETA(J)
ENDDO
ENDDO
CALL RSQUARE(Y,YH,N,RM,RSQ)
WRITE(9,*)'COMPUTED SHAPLEY REGRESSION R_SQUARED =',RSQ
CLOSE(9)
WRITE(*,*)'RESULTS ARE STORED IN FILE = ',FINRES
STOP
END
!
--
SUBROUTINE INV(A,M,D)! MATRIX INVERSION
PARAMETER(MMAX=10)! MMAX IS THE MAXIMUM DIMENSION.
SUBROUTINE MATRIX INVERSION - EXCHANGE METHOD, KRISHNAMURTHY EV & SEN SK (1976)

COMPUTER-BASED NUMERICAL ALGORITHMS. AFFILIATED EAST-WEST PRESS, NEW DELHI, P.161

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION A(MMAX,MMAX)

! INVERSION BEGINS
D=1.D0 ! D IS THE DETERMINANT OF MATRIX A.
! THE RESULT (INVERSE OF A) IS STORED IN A ITSELF. A IS LOST
DO I=1,M
D=D*A(I,I)
A(I,I)=1.D0/A(I,I)
DO J=1,M
IF(I.NE.J) A(J,I)=A(J,I)*A(I,I)
ENDDO
DO J=1,M
DO K=1,M
IF(J.NE.K) A(J,K)=A(J,K)-A(J,I)*A(I,K)
ENDDO
ENDDO

! INVERSION ENDS
! WRITE(*,*)'DETERMINANT=',D
RETURN
END

SUBROUTINE INIT(VX,VY) ! INITIALIZES (INTERNAL USE)

PARAMETER (MMAX=10)
DIMENSION VX(MMAX,MMAX),VY(MMAX)
DO I=1,MMAX
DO J=1,MMAX
IF(I.EQ.J) THEN
VX(I,J)=1
ELSE
VX(I,J)=0
ENDIF
ENDDO
VY(I)=0
ENDDO
RETURN
END

SUBROUTINE RSQUARE(Y,YH,N,RM,RSQ) ! FINDS REGRESSION R SQUARE

PARAMETER (NMAX=100)
DIMENSION Y(NMAX),YH(NMAX)
AY=0
AYH=0
VY=0
VYH=0
VYYH=0
DO I=1,N
AY=AY+Y(I)
AYH=AYH+YH(I)
VY=VY+Y(I)**2
VYH=VYH+YH(I)**2
VYYH=VYYH+Y(I)*YH(I)
ENDDO
AY=AY/N
AYH=AYH/N
VY=VY/N
VYYH=VYYH/N
RM = VYYH/SQRT(VY*VYH)
RSQ=(VYYH**2)/(VY*VYH)
RETURN
END

SUBROUTINE COMBIN(IN,IR,OFIL)! LISTS COMBINATIONS

PARAMETER (NMAX=10,MMAX=2000)
DIMENSION A(NMAX),B(NMAX),C(MMAX)
CHARACTER *70 OFIL
OPEN(15,FILE=OFIL)
DO I=1,IR
A(I)=I
ENDDO
B(1)=IN+1
- IR
DO J=1,IR
B(J+1)=B(J)+1
ENDDO
MM=1
10 DO K=1,IR
C(MM)=A(K)
MM=MM+1
ENDDO
IF(A(1).NE.B(1)) THEN
DO M=1,IR
IM=M+1
A(IM)=A(IM)+1
IF(A(IM).LE.B(IM)) GO TO 2
ENDDO
DO M=1,IR
IM=M+1
A(IM)=A(IM)+1
IF(A(IM).LE.B(IM)) GO TO 2
ENDDO
ENDDO
WRITE(*,*)'DETERMINANT=',D
RETURN
END

SUBROUTINE VINIT(VX,VY) ! INITIALIZES (INTERNAL USE)

PARAMETER (MMAX=10)
DIMENSION VX(MMAX,MMAX),VY(MMAX)
DO I=1,MMAX
DO J=1,MMAX
IF(I.EQ.J) THEN
VX(I,J)=1
ELSE
VX(I,J)=0
ENDIF
ENDDO
VY(I)=0
ENDDO
RETURN
END

SUBROUTINE RSQUARE(Y,YH,N,RM,RSQ) ! FINDS REGRESSION R SQUARE

PARAMETER (NMAX=100)
DIMENSION Y(NMAX),YH(NMAX)
AY=0
AYH=0
VY=0
VYH=0
VYYH=0
DO I=1,N
AY=AY+Y(I)
AYH=AYH+YH(I)
VY=VY+Y(I)**2
VYH=VYH+YH(I)**2
VYYH=VYYH+Y(I)*YH(I)
ENDDO
AY=AY/N
AYH=AYH/N
VY=VY/N
VYYH=VYYH/N
RM = VYYH/SQRT(VY*VYH)
RSQ=(VYYH**2)/(VY*VYH)
RETURN
END

SUBROUTINE COMBIN(IN,IR,OFIL)! LISTS COMBINATIONS

PARAMETER (NMAX=10,MMAX=2000)
DIMENSION A(NMAX),B(NMAX),C(MMAX)
CHARACTER *70 OFIL
OPEN(15,FILE=OFIL)
DO I=1,IR
A(I)=I
ENDDO
B(1)=IN+1
- IR
DO J=1,IR
B(J+1)=B(J)+1
ENDDO
MM=1
10 DO K=1,IR
C(MM)=A(K)
MM=MM+1
ENDDO
IF(A(1).NE.B(1)) THEN
DO M=1,IR
IM=M+1
A(IM)=A(IM)+1
IF(A(IM).LE.B(IM)) GO TO 2
ENDDO
DO M=1,IR
IM=M+1
A(IM)=A(IM)+1
IF(A(IM).LE.B(IM)) GO TO 2
ENDDO
ENDDO
WRITE(*,*)'DETERMINANT=',D
RETURN
END

SUBROUTINE MATRIX INVERSION - EXCHANGE METHOD, KRISHNAMURTHY EV & SEN SK (1976)

COMPUTER-BASED NUMERICAL ALGORITHMS. AFFILIATED EAST-WEST PRESS, NEW DELHI, P.161

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION A(MMAX,MMAX)

! INVERSION BEGINS
D=1.D0 ! D IS THE DETERMINANT OF MATRIX A.
! THE RESULT (INVERSE OF A) IS STORED IN A ITSELF. A IS LOST
DO I=1,M
D=D*A(I,I)
A(I,I)=1.D0/A(I,I)
DO J=1,M
IF(I.NE.J) A(J,I)=A(J,I)*A(I,I)
ENDDO
DO I=1,M
DO K=1,M
IF(J.NE.K) A(J,K)=A(J,K)-A(J,I)*A(I,K)
ENDDO
ENDDO

! INVERSION ENDS
! WRITE(*,*)'DETERMINANT=',D
RETURN
END

SUBROUTINE INIT(VX,VY) ! INITIALIZES (INTERNAL USE)

PARAMETER (MMAX=10)
DIMENSION VX(MMAX,MMAX),VY(MMAX)
DO I=1,MMAX
DO J=1,MMAX
IF(I.EQ.J) THEN
VX(I,J)=1
ELSE
VX(I,J)=0
ENDIF
ENDDO
VY(I)=0
ENDDO
RETURN
END

SUBROUTINE RSQUARE(Y,YH,N,RM,RSQ) ! FINDS REGRESSION R SQUARE

PARAMETER (NMAX=100)
DIMENSION Y(NMAX),YH(NMAX)
AY=0
AYH=0
VY=0
VYH=0
VYYH=0
DO I=1,N
AY=AY+Y(I)
AYH=AYH+YH(I)
VY=VY+Y(I)**2
VYH=VYH+YH(I)**2
VYYH=VYYH+Y(I)*YH(I)
ENDDO
AY=AY/N
AYH=AYH/N
VY=VY/N
VYYH=VYYH/N
RM = VYYH/SQRT(VY*VYH)
RSQ=(VYYH**2)/(VY*VYH)
RETURN
END

SUBROUTINE COMBIN(IN,IR,OFIL)! LISTS COMBINATIONS

PARAMETER (NMAX=10,MMAX=2000)
DIMENSION A(NMAX),B(NMAX),C(MMAX)
CHARACTER *70 OFIL
OPEN(15,FILE=OFIL)
DO I=1,IR
A(I)=I
ENDDO
B(1)=IN+1
- IR
DO J=1,IR
B(J+1)=B(J)+1
ENDDO
MM=1
10 DO K=1,IR
C(MM)=A(K)
MM=MM+1
ENDDO
IF(A(1).NE.B(1)) THEN
DO M=1,IR
IM=M+1
A(IM)=A(IM)+1
IF(A(IM).LE.B(IM)) GO TO 2
ENDDO
DO M=1,IR
IM=M+1
A(IM)=A(IM)+1
IF(A(IM).LE.B(IM)) GO TO 2
ENDDO
ENDDO
 Journal of Economics Bibliography

ENDDO
2 DO M=IM,IR
 A(M+1)=A(M)+1
ENDDO
GO TO 1
ENDIF
MM=MM-1
I=1
IX=IR
DO WHILE(IX.LE.MM)
 WRITE(15,*)(INT(C(J)),J=I,IX)
 I=I+IR
 IX=IX+IR
ENDDO
CLOSE(15)
RETURN
END

! ==================================

SUBROUTINE REGRESS(XX,XY,ARRAY,RSQ,N,MX)! OLS SUBROUTINE
PARAMETER (NMAX=100,MMAX=10)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(NMAX,MMAX),Y(NMAX),XX(MMAX,MMAX),XY(MMAX),B(MMAX)
DIMENSION V
X(MMAX,MMAX),VY(MMAX),YH(NMAX)
DIMENSION ARRAY(MMAX)
CHARACTER *70 INFIL
COMMON /DAT/X,Y
CALL VINIT(VX,VY)! INITIALIZE VX AND VY
M=MX
DO I=1,M
 II=INT(ARRAY(I))
 J=1:M
 JJ=INT(ARRAY(J))
 VX(I,J)=XX(II,JJ)
ENDDO
VY(I)=XY(II)
ENDDO
CALL INV(VX,M,DET)
! COMPUTE REGRESSION COEFFICIENT
DO I=1,M
 B(I)=0
 DO J=1,M
 B(I) = B(I)+VX(I,J)*VY(J)
 ENDDO
ENDDO
! FIND R SQUARE
DO I=1,N
 YH(I)=0
 DO J=1,M
 JJ=INT(ARRAY(J))
 YH(I)=YH(I)+X(I, JJ)*B(J)
 ENDDO
ENDDO
CALL RSQUARE(Y,YH,N,RSQ)
!

PRINT ORDINARY REGRESSION COEFFICIENTS AND R SQUARE

! WRITE(*,*)'ORDINARY REGRESSION COEFFICIENTS AND R SQUARE'
! WRITE(*,*)(B(J),J=1,M), ' RSQUARE =',RSQ
RETURN
END
!
--
FUNCTION NCR(IN,IR) ! FINDS NCR
NF=1
NR=1
DO I=1,IR
 NF=NF*(IN-I+1)
 NR=NR*I
ENDDO
NCR=NF/NR
RETURN
END
!

SUBROUTINE HOST_PARASITE(M,RBETA)
! ALGORITHM & PROGRAM BY PROF. SK MISHRA, DEPT. OF ECONOMICS
! NORTH-EASTERN HILL UNIVERSITY (SHILLONG), INDIA
PARAMETER(NMAX=1000,MMAX=10)
PARAMETER(MAXREP=15, NREP=1)

! NMAX = MAXIMUM NUMBER OF BIRDS TO GENERATE
! MMAX = MAXIMUM DIMENSION OR NO. OF DECISION VARIABLES
! MAXREP = MAXIMUM NO. OF REPLICATIONS
! NREP = NUMBER OF REPLICATIONS
! MAXITER = MAXIMUM NUMBER OF ITERATIONS
! EPS = CONVERGENCE CRITERION

! DOUBLE PRECISION LEVY! FUNCTION LEVY(BETA) IS DOUBLE PRECISION
! COMMON /RNDM/IU,IV ! TO GENERATE UNIFORM DISTRIBUTED RANDOM NUMBERS
! COMMON /KFF/KF,NFCALL,FTIT ! KF IS FUNCTION CODE; NFCALL IS THE NUMBER OF FUNCTION CALLS; FTIT IS THE TITLE OF THE FUNCTION
! CHARACTER *70 TIT(200),FTIT ! TITLE OF FUNCTIONS, A BATTERY OF 100 TEST FUNCTION
! CHARACTER *70 HISTORY ! OUTPUT FILE TO STORE HISTORY OF COVERAGE
! INTEGER IU,IV! FOR GENERATING UNIFORMLY DISTRIBUTED RANDOM NUMBERS
! DIMENSION CUCKOO(NMAX,MMAX),CROW(NMAX,MMAX),ICU(NMAX),ICR(NMAX)
! DIMENSION A(MMAX),FCU(NMAX),FCR(NMAX),TCUC(MMAX),TCRO(MMAX)
! DIMENSION OPTVAL(MAXREP),NRAND(MAXREP),EXTIME(MAXREP)
DIMENSION EXCYCLE(MAXREP)
CHARACTER *8 CLOCK, START_TIME, NOW_TIME
COMMON (HFORMAT,RVECT,CONTRIB)
DIMENSION RMAT(MMAX,MMAX),RVECT(MMAX),CONTRIB(MMAX),RBETA(MMAX)
DATA (NRAND(I),I=1,MAXREP)/45331,4
4431,44421,44401,45671,53277,
&34567,23171,98267,49821,11387,17869,12352,12017,10501/

! LINEAR FUNCTION
DPROB(PROB)=0.3D0*(1.D0-PROB)
! Gompertz Curve
DPROB(PROB)=0.7D0*(EXP(-2*EXP(-1.0D0+DLOG(1+PROB))))
! LOGISTIC FUNCTION
DPROB(PROB)=0.5-0.5*DLOG(1+EXP(-PROB))
! LOGIT FUNCTION
DPROB(PROB)=0.05D0*DLOG(1+PROB)

!PROB(IFN1,FN2)=0.7*(EXP(-2*EXP(-0.00001D0/(1+DLOG(1+DABS(FN1-FN2))))*IT)))
! THIS STATEMENT FUNCTION DEFINES THE DETECTION/REJECTION FUNCTION
! OF A CUCKOO EGG BY THE HOST (0.7 IS THE UPPER LIMIT OF PROB)
!
!WRITE(*,*)'FILE (NAME.TXT) TO STORE HISTORY OF CONVERGENCE ?'
! THIS FILE STORES THE HISTORY OF CONVERGENCE OF CUCKOOS AND CROWS
'READ(*,*) HISTORY
HISTORY='HIST.TXT'
OPEN(15,FILE=HISTORY)
!

! ===
DO IREP=1,NREP
!
!

IF(IREP.EQ.1) THEN
! SELECT/CHOOSE THE FUNCTION TO OPTIMIZE
CALL FSELECT(KF,M,FTIT) ! CHOOSES THE FUNCTION TO OPTIMIZE
!WRITE(*,*)'NO. OF CUCKOOS (EQUAL TO NO. OF CROWS) ?'
!WRITE(*,*)'THIS COULD BE BETWEEN 30 AND 100, SAY.'
!READ(*,*) NCU, NCR ! NO. OF CUCKOOS (& CROWS) TO
!GENETE.
!NCU SHOULD BE NOT MORE THAN A HALF OF NMAX (NMAX > 2*NCU)
!NCR=NCU ! THE CROWS ARE AS MANY AS THE CUCKOOS
!WRITE(*,*)'FEED THE RANDOM NUMBER SEED'
!READ(*,*) IU ! RANDOM NUMBER SEED (5 DIGITS ODD INTEGER NUMBER)
NCU=30
NCR=30
!
WRITE(*,*)'MAX TIME(SEC) TO RUN?. FIVE SECS ARE ENOUGH, FEED 5.'
!READ(*,*) AMAXSEC,VTHEN
READ(*,*) AMAXSEC
VTHEN=9999
!

BET=0.2D0 ! NEEDED TO GENERATE CAUCHY FLIGHTS (CUCKOOS)
GAM=0.8D0 ! NEEDED TO GENERATE CAUCHY FLIGHTS (CROWS)
!

SCALE=10 !(SCALING OF INITIAL VALUES OF DECISION VARIABLES)
FACTOR=SCALE ! SCALING FACTOR
NFCALL=0 ! NO. OF FUNCTION CALLS : INITIALIZED
CUSD=1.0D30 ! USED FOR CONVERGENCE CRITERION
CRSD=1.0D30 ! USED FOR CONVERGENCE CRITERION
PROX=0.0D0 ! DETERMINES CHOICE BETWEEN LEVY AND CAUCHY FLIGHTS
PROB=0.5D0
ALF=1.0D-06 ! AFFECTS THE RATE OF CONVERGENCE
SUCCESS=0.0D0
CZH=2.4D0 ! CLOCK CYCLES (PER SECOND) OF THE CPU
!
! GENERATE CUCKOOS RANDOMLY AND EVALUATE
CALL TIME(CLOCK)
!START_TIME=CLOCK
!CALL TIME(CLOCK)
!START_TIME=CLOCK
CALL CPU_TIME(START)
IU=NRAND(IREP)
KSEED=IU
DO I=1,NCU
DO J=1,M
CALL RANDOM(RAND)
A(J)=(RAND-0.5)*FACTOR
CUCKOO(I,J)=A(J)
ENDDO
CALL FUNC(M,A,F)
FCU(I)=F*FSIGN
ENDDO
!

! GENERATE CROWS RANDOMLY AND EVALUATE
CALL TIME(CLOCK)
!START_TIME=CLOCK
CALL CPU_TIME(START)
IU=NRAND(IREP)
KSEED=IU
DO I=1,NCR
DO J=1,M
CALL RANDOM(RAND)
A(J)=(RAND-0.5)*FACTOR
CROW(I,J)=A(J)
ENDDO
CALL FUNC(M,A,F)
FCR(I)=F*FSIGN
ENDDO
ENDDO
IF(NSORT.EQ.1) THEN
CALL SORT(CUCKOO,FCU,NUC,M) ! SORT CUCKOO POPULATION
CALL SORT(CROW,FCR,NCR,M) ! SORT CROW POPULATION
LOCU=1
LOKR=1
ELSE
CALL FINDBEST(PCU, NUC, TOPCU, LOCU)
CALL FINDBEST(PCR, NCR, TOPKR, LOKR)
ENDIF
!
ICOUNT=0
!
--
IT=0 ! INITIALIZATION OF ITERATION
FEPS=0.0D0 ! INITIALIZATION OF TERMINATION CONDITION
DO IT=1,MAXITER
DO WHILE (IT.LE.MAXITER.AND.FEPS.EQ.0.0)
FN1=FCU(LOCU) ! BEST VALUE OF CUCKOOS
FN2=FCR(LOKR) ! BEST VALUE OF CROWS
PN=PRP(LOCU) ! BEST VALUE OF CUCKOOS
PN2=PRP(LOKR) ! BEST VALUE OF CROWS
PDET=+PRP(LOCU) ! DEFINED IN THE STATEMENT FUNCTION
! SET ICU AND ICR TO ZERO
DO I=1,NUC
ICU(I)=0
ENDDO
DO I=1,NCR
ICR(I)=0
ENDDO
! CUCKOOS REGENERATE THEMSELVES (FLY) WITH LEVY FLIGHT
DO I=1,NUC
DO J=1,M
CALL RANDOM(RAND)
ALPHA=ALIF+(RAND)**2 ! AFFECTS THE SPEED OF CONVERGENCE
CALL RANDOM(RAND)
OMEGA=ALIF+(RAND)**2 ! AFFECTS THE SPEED OF CONVERGENCE
CALL RANDOM(RC)
CALL RANDOM(RAND)
L=1+INT(NCR*RAND)
CALL RANDOM(RAND)
DFN=(CROW(L,J)-CUCKOO(I,J))
IF(RAND.GE.PDET) THEN
A(J)=CUCKOO(I,J)+ALPHA*(RC-0.5)*LEVY(BETA)*DFN
!A(J)=CUCKOO(I,J)+ALPHA*(RC-0.5)*BURR12()*DFN
!A(J)=CUCKOO(I,J)+ALPHA*(RC-0.5)*GAUSS()*DFN
!A(J)=CUCKOO(I,J)+ALPHA*(RC-0.5)*CAUCHY(BET)*DFN
ELSE
A(J)=CUCKOO(I,J)+ALPHA*(RC-0.5)*CAUCHY(BET)*DFN
ENDIF
ENDDO
CALL FUNC(M,A,F)
! A NEW SOLUTION IS ADMITTED ONLY IF IT IS BETTER
FNEW=FSIGN IF(FCU(I).GT.FNEW) THEN
FCU(I)=FNEW
ICU(I)=1
DO J=1,M
CUCKOO(I,J)=A(J)
ENDDO
ENDIF
ENDDO
! TRY TO PLACE THE EGGS OF CUCKOOS INTO CROW-NESTS
DO I=1,NUC
CALL RANDOM(RAND)
IX=1+INT(NCR*RAND)
CALL RANDOM(RAND)
MK=0
IF(RAND.GT.PDET.AND.ICR(IX).EQ.0) MK=1
IF(MK.EQ.1.AND.ICU(I).EQ.1.AND.FCR(IX).GT.FCU(I)) THEN
ICR(IX)=1
ICU(I)=1
FCR(IX)=FCU(I)
DO J=1,M
CROW(IX,J)=CUCKOO(I,J)
ENDDO
ENDIF
ENDDO
! SET ICU TO ZERO
DO I=1,NUC
ICU(I)=0
ENDDO
! SET ICR TO ZERO AND CROW(I,J) TO RANDOM. ALSO FIND FITNESS
DO I=1,NCR
IF(ICR(I).NE.0) THEN
DO J=1,M
CALL RANDOM(RK)
CALL RANDOM(RAND)
L=1+INT(NCR*RAND)
CALL RANDOM(RAND)
DFN=(CROW(L,J)-CROW(I,J))
IF(RAND.GE.PDET) THEN
A(J)=CROW(L,J)+OMEGA*(RK-0.5)*LEVY(GAMMA)*DFN
!A(J)=CROW(L,J)+OMEGA*(RK-0.5)*BURR12()*DFN
!A(J)=CROW(L,J)+OMEGA*(RK-0.5)*GAUSS()*DFN
!A(J)=CROW(L,J)+OMEGA*(RK-0.5)*CAUCHY(GAM)*DFN
ELSE
A(J)=CROW(L,J)+OMEGA*(RK-0.5)*CAUCHY(GAM)*DFN
ENDIF
ENDDO
CALL FUNC(M,A,F)
IF(FCR(I).GT.F*FSIGN) THEN
 FCR(I)=F*FSIGN
DO J=1,M
 CROW(I,J)=A(J)
ENDDO
ICR(I)=0
SUCCESS=SUCCESS+1
ENDIF
ENDIF
ENDDO
PROB=SUCCESS/(NCU*(IT+1))
IF(NSORT.EQ.1) THEN
 CALL SORT(CUCKOO,FCU,NCU,M) ! SORT CUCKOO POPULATION
 CALL SORT(CROW,FCR,NCR,M) ! SORT CROW POPULATION
 LOCU=1
 LOKR=1
ELSE
 CALL FINDBEST(FCU,NCU,TOPCU,LOCU)
 CALL FINDBEST(FCR,NCR,TOPKR,LOKR)
ENDIF
BESTVAL=FCR(LOKR)
! DISPLAY RESULTS AT EVERY IPRN ITERATIONS
IF(INT(ICOUNT/IPRN).EQ.(FLOAT(ICOUNT)/IPRN)) THEN
 ICOUNT=0
 WRITE(*,1)
 1 FORMAT(/39('*=')
 WRITE(*,*)'PROBLEM NO.=',KF,' DIMENSION=',M,' RANDOM SEED=',KSEED,
 & EXPERIMENT NO. = ', IREP
 WRITE(*,*)'CUCKOO COORDINATE VALUES'
 WRITE(*,*)(CUCKOO(LOCU,J),J=1,M)
 WRITE(*,*)'---'
 WRITE(*,*)'CROW COORDINATE VALUES'
 WRITE(*,*)(CROW(LOKR,J),J=1,M)
 WRITE(*,*)'---'
 WRITE(*,*)'FITNESS OF CUCKOOS AND CROWS =',FCU(LOCU), FCR(LOKR)
 WRITE(*,*)'NO.OF FUNCTION CALLS=',NFCALL,' PROB OF REJECT=',PDET
 WRITE(15,*)(NFCALL+.0D0),FCU(LOCU),FCR(LOKR),PROB,PDET
 CALL MEANSD(FCU,NCU,CUMEAN,CUSD,CUSKEW)
 CALL MEANSD(FCR,NCR,CRMEAN,CRSD,CRSKEW)
 WRITE(*,*) 'FMEANS =',CUMEAN, CRMEAN,' FSD =',CUSD,CRSD
 WRITE(*,*)'SKEWNESS IN CUCKOO & CROW POPULATIONS =',CUSKEW,CRSKEW
 ' CUMEAN & CRMEAN ARE MEAN FUNCTION VALUES - CUCKOOS & CROWS
 ' CUSD & CRSD ARE STD DEV OF FUNCTION VALUES - CUCKOOS & CROWS
 ' CUMED & CRMED ARE MEDIANS OF FUNCTION VALUES FOR CUCKOOS & CROWS
 ' IF(CUSD.LT.EPS.OR.CRSD.LE.EPS) FEPS=1 ! TERMINATION CONDITION
 CYCL=CPUT*GHZ
 WRITE(*,*)'CPU TIME(S) TAKEN =',CPUT,' CLOCK CYCLES(GIGA) =',CYCL,
 & EXPERIMENT #', IREP
 WRITE(*,*)'---'
ENDIF
CALL CPU_TIME(FINISH)
CPUT=(FINISH-START)
IF(CPUT.GE.AMAXSEC) GOTO 2
IF(DABS(BESTVAL-VTHEN).LT.1.0D-12) GOTO 2
!
ENDIF
ICOUNT=ICOUNT+1
IT=IT+1
ENDDO ! END OF WHILE LOOP
!
WRITE(*,*)'TOTAL NO. OF FUNCTION CALLS =',NFCALL
CLOSE(1)
2 OPTVAL(IREP)=BESTVAL
! EXTIME(IREP)=NSEC
EXCYCLE(IREP)=CYCL
DO JH=1,M
 TCUC(JH)=TCUC(JH)+CUCKOO(LOCU,JH)
 TCRO(JH)=TCRO(JH)+CROW(LOKR,JH)
ENDDO
ENDDO ! ENDS THE IREPEAT LOOP
!
WRITE(*,*)'OPT F =',(OPTVAL(I),I=1,NREP)
WRITE(*,*)'

Journal of Economics Bibliography

EXTM=0.D0
EXTS=0.D0
OPTM=0.D0
OPTS=0.D0
EXCYCM=0.D0
EXCYCS=0.D0
DO I=1,NREP
 OPTM=OPTM+OPTVAL(I)
 EXTM=EXTM+EXTIME(I)
 EXCYCM=EXCYCM+EXCYCLE(I)
 OPTS=OPTS+OPTVAL(I)**2
 EXTS=EXTS+EXTIME(I)**2
 EXCYCS=EXCYCS+EXCYCLE(I)**2
ENDDO

OPTM=OPTM/NREP
EXTM=EXTM/NREP
EXCYCM=EXCYCM/NREP
OPTS=DSQRT(DABS(OPTS/NREP-OPTM**2))
EXTS=DSQRT(DABS(EXTS/NREP-EXTM**2))
EXCYCS=DSQRT(DABS(EXCYCS/NREP-EXCYCM**2))

IF(OPTM.EQ.0.D0) THEN
 CV=OPTS/(1+OPTM)
ELSE
 CV=OPTS/OPTM
ENDIF
WRITE(*,*) 'MEAN, SD & CV',OPTM,OPTS,CV
WRITE(*,*) 'MEAN TIME & SD',EXTM,EXTS
WRITE(*,*) 'MEAN GI CYCLES & SD',EXCYCM,EXCYCS
CLOSE(15)
DO J=1,M
!RBETA(J)= TCUC(J)
RBETA(J)=CUCKOO(LOCU,J)
ENDDO
!WRITE(*,*)'PROGRAM ENDS. THANK YOU'
RETURN
END

SUBROUTINE NORMAL(R1,R2)
!
PROGRAM TO GENERATE N(0,1) FROM RECTANGULAR RANDOM NUMBERS
IT USES BOX-MULLER VARIATE TRANSFORMATION FOR THIS PURPOSE.

DO J=1,M
!
! BOX-MULLER METHOD BY GEP BOX AND ME MULLER (1958) ----
!
! BOX, G. E. P. AND MULLER, M. E. "A NOTE ON THE GENERATION OF
! IF U1 AND U2 ARE UNIFORMLY DISTRIBUTED RANDOM NUMBERS (0,1),
! THEN X=((-2*LN(U1))**.5)*COS(2*PI*U2) IS N(0,1)
! ALSO, X=(-2*LN(U1))**.5)*SIN(2*PI*U2) IS N(0,1)
! PI = 4*ARCTAN(1.0)= 3.1415926535897932384626433832795
! 2*PI = 6.283185307179586476925286766559
!
 IMPlicit DOUBLE PRECISION (A-H,O-Z)
COMMON /RNDM/IU,IV
INTEGER IU,IV
!
CALL RANDOM(RAND) ! INVOKES RANDOM TO GENERATE UNIFORM RAND [0, 1]
U1=RAND ! U1 IS UNIFORMLY DISTRIBUTED [0, 1]
CALL RANDOM(RAND) ! INVOKES RANDOM TO GENERATE UNIFORM RAND [0, 1]
U2=RAND ! U2 IS UNIFORMLY DISTRIBUTED [0, 1]
!
X=DSQRT(-2.D0*DLOG(U1))
R1=X*DCOS(U2*6.283185307179586476925286766559D00)
R2=X*DSIN(U2*6.283185307179586476925286766559D00)
RETURN
END
!
DOUBLE PRECISION FUNCTION LEVY(BETA)
!
GENERATING LEVY FLIGHT
! MECHANISM FOR GLOBAL OPTIMIZATION ALGORITHMS", [JUNE 2001].
DOUBLE PRECISION BETA, R
COMMON /RNDM/IU,IV
INTEGER IU,IV
CALL RANDOM(RAND) ! INVOKES RANDOM TO GENERATE UNIFORM RAND [0, 1]
DOUBLE PRECISION RAND
RAN=REAL(RAND)
RAN=REAL(RAND)*0.5
RETURN
END

DOUBLE PRECISION FUNCTION CAUCHY(BETA)
!
FOLDED CAUCHY DISTRIBUTION

DOUBLE PRECISION R1,R2,BETA
COMMON /RNDM/IU,IV
INTEGER IU,IV
1 CALL NORMAL(R1,R2)
 CAUCHY=DABS(R1/R2)
IF(CAUCHY.GT.500) GOTO 1
RETURN
END

SUBROUTINE SORT(X,F,N,M)
! ARRANGING F(I) IN ORDER
PARAMETER(NMAX=1000,MMAX=100)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION F(NMAX),X(NMAX,MMAX)
DO I=1,N
 DO II=I+1,N
 IF(F(I).GT.F(II)) THEN
 T=F(I)
 F(I)=F(II)
 F(II)=T
 DO J=1,M
 T=X(I,J)
 X(I,J)=X(II,J)
 X(II,J)=T
 ENDDO
 ENDIF
 ENDDO
ENDDO
RETURN
END

SUBROUTINE FINDBEST(F,N,BEST,LO)
! ARRANGING F(I) IN ORDER
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION F(*)
BEST=F(1)
LO=1
DO I=1,N
 IF(F(I).LT.BEST) THEN
 BEST=F(I)
 LO=I
 ENDIF
ENDDO
RETURN
END

SUBROUTINE MEANSD(X,N,A,S,SKEW)
PARAMETER(NMAX=1000,MMAX=200)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(*)
A=0.D0
S=0.D0
DO I=1,N
 A=A+X(I)
 S=S+X(I)**2
ENDDO
S=DSQRT(DABS(N*S-A**2)/(N*N))
A=A/N
SKEW=0.D0
IF(S.GT.0.0001) THEN
 DO I=1,N
 SKEW=SKEW+((X(I)-A)/S)**3
 ENDDO
 SKEW=N*SKEW/((N-1)*(N-2))
ENDIF
RETURN
END

SUBROUTINE FSELECT(KF,M,FTIT)
! THE PROGRAM REQUIRES INPUTS FROM THE USER ON THE FOLLOWING ------
!(1) FUNCTION CODE (KF), (2) NO. OF VARIABLES IN THE FUNCTION (M);
! CHARACTER *70 TIT(200),FTIT
WRITE(*,*)'--'
DATA TIT(1)/'KF=1 SHAPLEY VALUE REGRESSION M VARIABLES M=?'/
WRITE(*,*)'--'
WRITE(*,*)'FUNCTION CODE [KF] AND NO. OF VARIABLES [M] ?'
READ(*,*) KF,M
KF=1
FTIT=TIT(KF) ! STORE THE NAME OF THE CHOSEN FUNCTION IN FTIT
RETURN
END

SUBROUTINE FUNC(M,X,F)
! TEST FUNCTIONS FOR GLOBAL OPTIMIZATION PROGRAM
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /RNDM/IU,IV
COMMON /KFF/KF,NFCALL,FTIT
INTEGER IU,IV
DIMENSION X(*)
CHARACTER *70 FTIT
READ(*,*) FTIT
NF=NF+1
! IF NF<10 THEN GO TO 250
! IF NF>6 THEN GO TO 250
READ(*,*) M
DO I=1,M
 READ(*,*) XI
ENDDO
WRITE(*,*)'---'
WRITE(*,*)'FUNCTION NAME [M.X.F] STORE THE NAME OF THE CHOSEN FUNCTION IN FTIT'
WRITE(*,*)'FUNCTION CODE [KF] AND NO. OF VARIABLES [M] ?'
READ(*,*) KF,M
RETURN
END
IF(KF.EQ.1) THEN
CALL CALCBET(M,X,F)
RETURN
ENDIF
RETURN
END

!-----------------------------------
SUBROUTINE CALCBET(M,BETA,F)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (MMAX=10)
COMMON /HP/RMAT,RVECT,CONTRIB
COMMON /RNDM/IU,IV
COMMON /KFF/KF,NFCALL,FTIT
CHARACTER *70 FTIT
DIMENSION RMAT(MMAX,MMAX),RVECT(MMAX),CONTRIB(MMAX),T(MMAX)
DIMENSION BETA(*)

IF(NFCALL.EQ.1) THEN
DO J=1,M
BETA(J)= CONTRIB(J)/RVECT(J)
ENDDO
ENDIF

DO J=1,M
T(J)=0.D0
DO J=1,M
T(J)=T(J)+RMAT(J,J)+BETA(J)
ENDDO
ENDDO

F=0.D0
DO J=1,M
F=F + (BETA(J)**2.0D0)+RVECT(J)-T(J)- CONTRIB(J)**2
ENDDO
RETURN
END
References

York, R. (2012). Residualization is not the answer: Rethinking how to address multicollinearity. *Social Science Research,* 41(6), 1379-1386. doi: 10.1016/j.ssrresearch.2012.05.014

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by-nc/4.0).