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The Second Law as a Cause of the Evolution 

 
By Oded KAFRIa† 

 
Abstract. It is a common belief that in any environment where life is possible, life will 
generated. Here it suggested that the cause for a spontaneous generation of complex 
systems is probability driven processes. Based on equilibrium thermodynamics, it argued 
that in low occupation number statistical systems, the second law of thermodynamics yields 
an increase of thermal entropy and a canonic energy distribution. However, in high 
occupation number statistical systems, the same law for the same reasons yields an increase 
of information and a Benford's law/power-law energy distribution. It is therefore, plausible, 
that eventually the heat death is not necessarily the end of the universe. 
Keywords. Information theory, Thermodynamics, Entropy, Evolution. 
JEL. C62. 

 

1. Introduction 
ntil the late 17th century, the common hypothesis about the origin of life 
was Abiogenesis or a spontaneous generation of life from organic 
substances. For example, if we put an orange on a table, after a while we 
will probably find worms in it. The conclusion that the worms generated 

from the orange is only part of the truth. We know today that eggs of a fly called 
Drosophila melanogaster have to be present in the orange, in the first place in order 
for the worms to generate. Nevertheless, the "explanation" that the eggs are the 
reason for the generation of the worms in the orange does not diminish the appeal 
of the Abiogenesis hypothesis. For an observer in space looking at the earth over 
billions of years, the formation of life, buildings, roads, cars etc, cannot explained 
in a similar way as the formation of worms in the orange. For him, the explanation 
for life and even buildings, books etc. is a spontaneous generation. What are the 
"eggs" of these objects? 

Contemporary science deals with evolution, namely how life evolved from the 
simple to the complex. Nevertheless, evolution theories do not deal and do not 
explain the reason for spontaneous generation of complex objects as life and 
artificial objects (Simeonov, 2010). 

Sometimes life regarded as a thriving for order. It seems we are constantly 
fighting against the chaos invading our life, constantly looking for rules and laws, 
and if we do not find them, we invent them. However, there is no scientific 
definition of order. It seems odd that order not defined in science, while entropy, 
the entity that conceived as a measure of disorder, is so widely used. According to 
the second law of thermodynamics, any process that causes the entropy to increase 
is likely to happen. In other words, such processes are spontaneous. This is the 
reason for the bad reputation of the second law "which fights our tendency to 
order". The Internet is loaded with theological material claiming that life is a 
violation of the second law of thermodynamics. 

In this paper, it argued exactly the opposite: The second law is responsible for 
life because life related to a spontaneous information increase, and information is a 
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part of entropy. It argued that entropy comprises of two parts: the thermal entropy 
and the informatics entropy. While the thermal entropy and its connection to the 2nd 
law are well known, the connection between information and the 2nd law was only 
recently discussed (Kafri, & Kafri, 2013; Kafri, 2007a; 2007b). 

Information conceived (erroneously) as order. It suggested that information 
contains null or even negative entropy (Brillouin, 1983). This "intuitive reasoning" 
is logically sound, as many understand information as the requirement that Alice 
will obtain the same value for the ith bit each time Bob sends her an identical file. 
Since the bits location is fixed, the file is a frozen entity and thus contains zero 
entropy. Even more popular intuition is that information is negative entropy as was 
suggested by Brillouin (1962 and Woolhouse, 1967). The reasoning of this 
conclusion is that the file, before it received, is unknown, and thus contains 
entropy, which reduced with every bit that Alice reads. Therefore, information is a 
reduction of entropy. 

Nevertheless, Shannon, in his first theorem, defined the information as the 
maximum amount of data that can transmitted in a noiseless channel. His 
expression, which is identical to the Gibbs entropy, represents the randomness of 
the distribution of the bits in a file (Shannon, 1949). The Shannon information tells 
us nothing about the actual content of a file and has no connection to it. When 
Alice receives a file of Λ bits, all we know is that there are maximum 2Λ different 
possible (configurations) contents. In some of these 2Λ files, the distribution of the 
bits correlated. In others, the distribution of the bits is random. When Alice 
receives a Λ bits random file, the amount of the Shannon information is I = Λ bits. 
If the distribution of the bits is not random Bob can compress the file and send a 
shorter file of length I such that I < Λ or in general I ≤ Λ. 

How many random distributions are there as compared with correlated 
distributions in a file? Jaynes has shown (Huang, 1987; Gupta, et al. 2005; 
Newman, 2006) that if we have a statistical ensemble, the most honest guess about 
its distribution is the Shannon information. The finding of Jaynes, in simple words, 
is that there are much more random distributions than there are correlated 
distributions.  The work of Jaynes suggests that for a statistical ensemble the 
second law is a mere probabilistic effect. If we do not know anything about a 
statistical ensemble, our best bet is that it is random. If we reshuffle a distribution 
of something, it will become more random. 

Jaynes work is applicable to information. If we add a noise to a file, it will 
probably increase the amount of the Shannon information in the file. Nevertheless, 
the subjective meaning of the message in the file may be lost. 

While the similarity between the Gibbs entropy and the Shannon information is 
clear, there is a distinctive difference between them. Information is a logical 
quantity; the Shannon information is a mathematical entity. It is neither a function 
of the file energy nor a function of the temperature, as it is not made of a 
materialistic substance. A binary information file contains only "1"'s and "0"s. 
Entropy on the other hand, is a physical quantity and has a physical dimension. The 
physical meaning of the entropy derived from the second law. The basic outcome 
of the second law is that heat flows spontaneously from a hot bath to a cold bath; it 
does so, because in this process the entropy increases. 

Another difference is that entropy is a dynamic quantity while information is a 
quenched quantity. Boltzmann obtained his approximation of the Clausius entropy 
for an ideal gas, which contains a large number of atoms exchanging energy 
constantly (Jaynes, 1988). The Boltzmann statistics contains inherently the canonic 
non-deterministic Maxwell-Boltzmann distribution. This distribution is a 
cornerstone of mechanical statistics as well as of quantum mechanics. 
Nevertheless, the canonic distribution is not applicable to information, which is a 
quenched quantity. 
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2. The paper in a nutshell 
In other publications (Kafri, & Kafri, 2013; Kafri, 2007a; 2007b) it was shown 

that if we assign energy to the information bits, it is obtained, from the 2nd law of 
thermodynamics, that the Shannon information is entropy, a random file is a state 
of equilibrium and the temperature is proportional to the bit's energy. In this paper, 
a toy model used to describe a generic file transmission from Bob to Alice using 
electromagnetic radiation. Bob is using a blackbody-based transmitter that enables 
him to control the temperature and the frequency of the radiation. In addition, Bob 
can modulate the radiation. It shown that when Bob transmits to Alice a low 
occupation number energy (the quantum limit), the thermodynamic functions of the 
energy transmission are the well-known canonic ones. However, when Bob 
increases the occupation number of the photons, a power-law distribution replaces 
the canonic distribution, information replaces the entropy, and the canonic 
statistical physics becomes a statistics of harmonic oscillators. In the high 
occupation limit, the obtained normalized thermodynamic functions are 
independent of any physical quantity and/or physical constant and therefore 
become purely logical functions.  A qualitative discussion about whether nature 
prefers generation of information or generation of canonic entropy yields a 
conclusion that the two are equally welcome. 

In section II, a toy model, in which Bob sends a collimated light beam to Alice, 
is described. Bob is using a blackbody radiation source that delivers energy per 
mode according to the Planck's statistics. Bob can change to his wish (without any 
physical limitations) the temperature of the source and select a frequency or 
frequencies of the radiation by a spectral filter. In addition, Bob has a shutter that 
enables him to modulate the radiation within the limitations of the laws of optics. It 
assumed that in equilibrium all the radiation modes that Alice receives have the 
same temperature.  

In section III, the quantum limit, it assumed that the energy of the photons is 
much higher than the average energy. The Planck equation yields the familiar 
canonic distribution. The obtained entropy of the radiation is the Gibbs expression 
and the ratio between the number of the photons and the number of empty modes is 
the Maxwell-Boltzmann distribution. 

In section IV, the high occupation limit, Bob is using his toy model to reduce 
the energy of the photon as compared with that of the average energy of the mode 
to the extent that the energy can added or removed smoothly to the mode. In this 
limit, the number of the photons is much larger than the number of the modes. The 
Bose-Einstein equation yields that each mode is a harmonic oscillator. It means 
that each mode's entropy is one Boltzmann constant, and the temperature is a linear 
function of the mode's energy. 

In section IV-a, modulation and information, Bob is modulating the sequence of 
the harmonic oscillators to a binary file. The Shannon information is calculated. It 
shown that in a random file, when the number of the harmonic oscillators 
(energetic modes) is equal to the number of the vacancies (empty modes), the 
Shannon information is equal to the length of the file. In other cases, it shown that 
the amount of the Shannon information is smaller. 

In section IV-b, equilibrium and entropy, the entropy of the file, which consists 
of harmonics oscillators and vacancies, is calculated. It shown that the Shannon 
information is the Gibbs mixing entropy. The Boltzmann H function is equivalent 
to the amount of information H in a correlated file.  

In section IV-c, logical quantities, it shown that the normalized entropy in Bob's 
transmission is a function that does not contain any physical variable or constant. 
This is with contradistinction to a canonic entropy transmission. Therefore, the 
normalized entropy, in the high occupation limit, is a logical quantity. 

In section IV-d, logical equilibrium –the Benford's law, Bob generates a set of 
modes in which each represents a digit. A possible way to construct such a set is to 
put in the mode that represents the digit N, N times more energy than the mode that 
represents the digit 1. To obtain equilibrium (equal temperature in the Planck 
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distribution) Bob has to use either a different frequency for each digit-mode or 
alternatively a different density for each digit in a file. The obtained normalized 
distribution function of the digit-modes in equilibrium is a pure logical function, 
which is not a function of the initial temperature and/or frequency chosen by Bob. 
The result is identical to the famous Benford's law. 

In section IV-e, energy distribution, the power-law, the log of the occupation 
number vs. the log of the photon energy divided by the average energy plotted for 
the Planck distribution. It is seen that in the low occupation number, a straight line 
of slop, –1, obtained. This behavior appears in many quantities in nature (a good 
example are the natural nets). With analogy to the momentum Gaussian 
distribution obtained from the canonic energy distribution if we consider the 
electric field of the radiation instead of the energy, a –2 slope obtained. Slopes 
around "-2" appear in many sociological statistics (Newman, 2006). 

In section V, mixed systems, the question whether information can survive side 
by side with the canonic thermal entropy in equilibrium is discussed. 

In section V-a, Hooke's law harmonic oscillator, a thermodynamic analysis of a 
mixed system consists of a single Hooke-law oscillator coupled to a heat bath at 
room temperature is presented. It is shown that the amplitude increase of a Hooke-
law oscillator has the Carnot efficiency, similar to that of the amplification of a file 
(Kafri, 2007a; 2007b). A Hooke-law oscillator will relax its energy spontaneously 
to the heat bath as the relaxation increases the entropy. 

In section V-b, information vs. thermal entropy, it shown that in the case of the 
blackbody emission, both the low occupation number photons as well as the high 
occupation number photons coexist in equilibrium. Therefore, it concluded that 
information and thermal entropy are equally welcome. 

In section VI, summary and discussion, a table that shows the differences 
between the thermodynamic functions in the canonic distribution and in the high- 
occupation harmonic distribution presented. In view of these differences, the 
meaning of the logical quantities obtained in the thermodynamic theory of 
communication discussed. It concluded that, in equilibrium, inert quanta distributed 
in modes yield a power-law/Bedford-law distribution. It suggested that the 
informatics aspect of life is a tendency for reproduction and a compressed 
communication.  

 
3. The Toy Model 
In Fig. 1, the setup in which Bob sends Alice a flux of photons described. The 

analysis based on the classical Carnot Clausius thermodynamic. In the classical 
thermodynamic, the entropy is S ≥ Q/T where the equality sign stands for 
equilibrium, Q is the heat that Bob is sending or Alice is receiving, and T is the 
temperature of the transmitter or the receiver. This inequality is the Clausius 
inequality (Kestin, 1976) derived directly from the efficiency of the Carnot cycle 
(Jaynes, 1988). 

 Bob is sending a sequence of photons in a single longitudinal mode to Alice, as 
described in Fig.1. Bob has a blackbody at temperature TH that emits a blackbody 
radiation. Bob attaches a pinhole filter (PH) of a diameter of λ2 with a positive lens 
in order to obtain a collimated single longitudinal mode. After the pinhole, spatial 
filter Bob attaches a spectral filer and a polarizer (SF) that passes only the 
frequency ν, with a spectral width Δν. Here λ and ν are the wavelength and the 
frequency of the transmitted signal. The spectral width determines the number of 
the temporal modes. Bob can modulate the photons beam by using a mechanical or 
electro-optical shatter.  Photons are bosons with a zero chemical potential. 
Therefore the number of photons n in a single mode obtained from the Planck 
distribution (Gershenfeld, 2000) is given by 

1

1
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Where i index the temporal modes, hν is the energy of the photon, TH is the 
temperature of the Bob's source and kB is the Boltzmann constant. 

 

 
Figure 1. A setup for a single transverse mode energy transmission from Bob to Alice 
 
Alice uses a detector to receive the message. In general, Alice uses a similar 

positive lens, a filter and a detector at the focal length of the lens. If the detector of 
Alice is at a temperature TL = TH, namely the temperature of the transmitter of Bob, 
the noise emitted by the detector will be as strong as the signal, and Alice will not 
be able to read the signals. Therefore, a prerequisite requirement for energy 
transmission from Bob to Alice is that TH > TL. In practice, Bob can heat his 
blackbody to a temperature limited by the physical properties of the blackbody's 
material. However, we assume that Bob does not have such limitations and he can 
produce a beam as hot as a laser beam to his wish. In addition, Bob can vary the 
frequency that he send. In practice, the wavelength of the radiation cannot exceed 
the diameter of the blackbody; nevertheless, we let Bob enjoy the benefit of a toy 
model. Hereafter, two limits discussed the quantum limit in which hν >> kBT and 
the high occupation limit in which hν << kBT.  

 
4. The Quantum Limit 
In the quantum limit, the energy of the photon hν is much higher than the 

average energy, kBT, of a mode emitted from a thermal bath (the blackbody). 
Therefore, classically it is impossible to emit a photon. However, when many 
modes are collecting their energies together they emit a single high-energy photon 
in an arbitrary (lucky) mode. In other words, when n << 1, it assumed that a group 
of 1/n modes will emit a single photon in an unknown mode of the group. 
Occupation numbers smaller than one exist in many systems in physics i.e. in ideal 
gas. In this case Eq(1) yields,  

 
iBTkh

i en
/

  ,                                                          (2) 

 
Which is the canonic distribution. Consider a sequence of Λ temporal modes 

emitted from a radiation source, which is not in equilibrium. Non-equilibrium state 
means that any mode may have its own temperature. The number of photons in the 

sequence is 


1i

in . The average energy of a single mode is qi = nihν. The 

temperature is calculated from Eq.(2) to be,  Ti = -hν/ kBlnni.. The entropy of a 

single mode will be Si = qi /Ti , or iiB nnk ln . Since the entropy is extensive, the 

total entropy of a sequence of Λ modes is, 
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When ni<<1, ni = pi and Eq.(3) is simply the Gibbs entropy. Assuming that all ni 
are equal to n (which means an equilibrium state as all the temperatures Ti are 
equal to T), we obtain from Eqs. (3&2); 
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,              (4) 

 
The entropy of the sequence of Λ temporal modes, in the quantum limit, is a 

function of the mode energy and its temperature. Any loss of a photon will change 
the entropy as well as any fluctuation of the source temperature.  

 
5. The High Occupation Limit 
When the source is hot and/or the frequency is low such that hν << kBT, Eq(1) 

yields, 
 
nihν= qi =kBTi   or Si= kB                                                                     (5) 
 

This is the well-known relation of a harmonic oscillator. In this limit, the photon 
energy is negligible as compared with the average energy of the mode, and 
therefore energy can removed or added in a continuous way. The uncertainty of ½ 
hν is also negligible. To some extent, it is a surprising result. Intuitively, we expect 
from one mode, which contains many photons, to have zero entropy. Nevertheless, 
one kB is a very small amount of entropy, i.e. a laser mode, which sometimes 
contains as much as 1020 photons, has the same amount of entropy as one vibration 
mode of a single molecule. The Gibbs, Boltzmann or Von-Neumann entropies 
yield null entropy for a single mode radiation, as they are only an approximation of 
the entropy for a statistical ensemble (Jaynes, 1965). Finite entropy to a single 
mode is necessary, as entropy is an extensive quantity and the emission of entropy 
by a blackbody radiation is the sum of the single modes emission. Therefore, if a 
single mode would not carry entropy, a blackbody would not emit entropy as well.      

When Bob is using his Blackbody (in this case, he will prefer a CW laser) and 
sending Alice Λ classical modes, the total entropy that is removed from his source 
is, 

 

B

i

i kSS 


1

,        (6) 

 
In the next two sections, it shown that entropy in the high occupation limit is 

not a simple sum of the entropies of the modes. A sequence of Λ oscillators is not 
always a state of equilibrium since we can add as many empty modes as we wish. 
Therefore, Eq.(6) is a lower bound of the entropy. The entropy defined only in 
equilibrium. The equation of the entropy can used away from equilibrium, however 
the obtained value (usually known as the Boltzmann -H function) is not unique and 
is always smaller than the entropy (Huang, 1987). 

The entropy of a single oscillator in the high occupation limit is not a function 
of the energy or of the temperature. In fact, when a mode divided to N fractions, 
each fraction, when received, carries the same amount of entropy as the undivided 
mode. It was shown previously (Kafri, 2007a; 2007b) that this property is the basis 
of information transmission and is the cornerstone of IT. 

 
5.1. Modulation and Information 
A possible way for Bob to modulate his source is to use a shutter (Fig. 1). Every 

temporal mode has a duration of its coherence length, namely Δt = c/Δν. Where c is 
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the speed of light. Therefore if the shutter is opened for a time interval Δt, an 
amount kB  of entropy is transmitted.  

When Bob is transmitting a file, he possibly starts by sending a header to inform 
Alice about the file length Λ that he intends to send and some other information 
about the kind of compression or the language he uses. Usually Alice replies to 
confirm the acceptance of the header and her consent or refusal to receive the data 
and so on. However, although this handshaking process is vital to any 
communication, it is not discussed here. The discussion here assumes that Bob and 
Alice have pre-agreed language, compression, protocol and an open channel of 
communication.  

If Bob sends L energetic bits in Λ modes where, Λ > L, there are several 
different messages that can be sent. The number of possible messages is the 
binomial coefficient Λ!/( Λ-L)! L!. The Shannon information is defined, in bits, as 
the shortest file I that has this number of messages. Therefore, 2I  = Λ!/( Λ-L)! L!.  
Hereafter the information will be expressed in nats, namely, eI  = Λ!/( Λ-L)! L!. 
Stirling formula yields, 
 
I = ΛlnΛ - LlnL - (Λ-L)ln(Λ-L).       (7)  

 
Under the assumption that all the combinations have equal probability, it is seen 

that if Λ = 2L then I = Λln2 namely, a random file contains the maximum amount 
of information. 

 
5.2. Equilibrium and Entropy 
The basic definition of equilibrium obtained from Clausius inequality, namely

TQS  .  When the heat transmitted divided by the temperature is equal to the 
entropy, the system is in equilibrium. This implies that when Q/T is a maximum, 
the system is in equilibrium. If the system is not in equilibrium, the obtained 
temperature (that is always higher than T) is not unique and can yield different 
values for different histories of a system.  

If we designate p≡ L/Λ, then the RHS of Eq.(7) can be rewritten as, 
 
I = -Λ{ pln p + (1- p)ln(1 – p)}                          (8)
  

Consider pΛ oscillators, each carries kB entropy, in a sequence of Λ modes.  In 
the setup of Fig 1, each mode has the same frequency and temperature. That means 
that each mode is in equilibrium with the emitting Blackbody and with the other 
modes. However, there is mixing entropy of the energetic modes and the empty 
modes. The mixing entropy of the ensemble a la Gibbs is, 

 
)}1ln()1(ln{ ppppkH B                                                                    (9)  

 
where H is the Boltzmann H function. The -H function is the entropy calculated 

away from equilibrium such that HS  .  In equilibrium p= ½, H has a minimum 

and Eq.(8) yields that  2ln BkS . 
Therefore it is possible to conclude that entropy and information are identical 

and a random sequence is a state of equilibrium. In the case that p< ½ one obtains,  
 
 S ≥ - H= kB I                                                                       (10) 

 
Eq.(10) is the Clausius inequality for informatics.  
It worth noting that Eq.(9) yields, in statistical physics, the canonic distribution 

(Kafri, 2007a; 2007b). Consider pΛ energetic particles of energy hν in Λ 
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microstates. The energy of the sequence is Q= pΛ hν .The temperature is defined a 
la Clausius as T  = ∂Q/∂S, Therefore, 

∂S/∂p = -Λhν/T = ΛkB {lnp- ln(1-p)} or Tkh Bepp
/

)1(


  which is the 
canonic distribution of Eq.(2) for a two level system(see table 1) (Kafri, 2007a; 
2007b). 

What is the reason for such different results, in statistical physics and in 
informatics, obtained from the same Eq.(9)? The explanation is that in statistical 
physics, the canonic distribution prevails and the entropy of a mode is a function of 
the energy and the temperature, as is seen in Eq(4). Therefore, equilibrium (a 
maximum entropy) may obtained, for any value of hν and T, for any p≤ ½. In 
informatics the entropy of a mode is not a function of the energy or the 
temperature, therefore equilibrium exists only for a single value p= ½. 

 
5.3. Logical Quantities 
When Bob modulates the transmitted radiation of the setup of Fig.(1), he 

usually does not care about the coherence length of his radiation source. He 
transmits a sequence of pulses and vacancies of equal length. Therefore, each "1" 
bit will usually carry more entropy than one kB. Practically it will carry K= mkB 
entropy units, were m is some integer (see Eq.(6)), therefore Eq.(10) can be 
rewritten as, 
 
S ≥  KI ,                                                                                          (11) 
 

When Bob transmits a file, all he wants is for Alice to receive correctly one of 
the 2Λ possible files in a Λ bits transmission. However, here we are interested for 
information of this particular transmission. A possible way to calculate the amount 
of information in the transmission is to use Eq.(9) to calculate -H/S which is the 
normalized information. Which yield 
 

1
2ln

)1ln()1(ln





pppp

S

H
.               (12) 

 
Eq.(12) is the logical Clausius inequality in informatics. It says that the 

maximum amount of information in a file that has a fraction p of the bits "1" or "0" 
is not a function of K. In fact, Eq.(12) is an inequality, free from any physical 
quantity. 

 
5.4. Logical Equilibrium – The Benford's Law 
Eq.(12) demonstrates that the fraction p of the "1" or "0" bits determines how 

far a file is from equilibrium. If p=1/2, it means that a file might be in equilibrium. 
Nevertheless, information transmission not done usually in bits. In our everyday 
life, we are using a much larger amount of symbols to communicate. An important 
set of symbols is the numerical digits. A possible way to form a set that represents 
the nine digits is to use nine kinds of modes. Each one contains 1,2,3,4,5,6,7,8,9 
energy units respectively. What will be the relative distribution of these modes in 
equilibrium? If all the bosons have the same energy, each occupation number n 
yields a different temperature, which means a non-equilibrium state. Eq.(1) is 
rewritten as, 
 

)
1

1ln()(
nTk

h
n

B




                 (13) 

 
It seen that as n increases, the temperature increases. A possible way to obtain 

equilibrium, namely an equal temperature for all the digits, is to use a spectral 
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filter, with nine different frequencies that can be obtained from Eq.(13). An 
alternative way to obtain an equilibrium state is to keep Φ constant and to 
distribute the nine symbols according to a density function )()( nn  . Such 
that, 
 

)
1

1ln()(
i

i
n

n                    (14) 

 
The relative distribution of digits in equilibrium is, 
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From Eq.(15) it is seen that Φ disappears altogether, similarly to the way the 

normalized entropy is independent of the frequency and temperature and became 

information, in the high occupation limit. Since )10ln()
1

1ln()(
9

1

9

1


 i ii

i
n

n . 

Therefore, 
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n                    (16) 

 
 Eq.(16) is the Benford's law (Hill, 1996; Benford, 1938; Hill, 1986) that was 

found empirically in many statistical ensembles of digits that originate from natural 
sources and are not produced by artificial randomizers. 

 

 
Figure2. The Benford's law is the probabilities of the digits in many numerical data files. 

 
It is worth noting that with the cancellation of Φ we see that the normalized 

distribution function is independent, not only of the temperature that was chosen 
arbitrarily in Eq.(13), but also of the energy of the boson as well. Moreover, it is 
free of any physical variable and/or physical parameter.  

 
5.5. Energy distribution – Power-law 
For a canonic ensemble, the energy distribution obtained from the Planck 

statistics is, iBi Tkh

i en
/

 . The Planck distribution gives us the number of 

photons for any ratio Φ = hν/kBT. Φ may be viewed as the relative energy of a 
photon with respect to the average energy. Therefore, the occupation number n of 
all the modes having the same temperature T (in equilibrium) given by, 
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The setup that describes Eq.(17) is the same one as in Fig.(1), but without the 

spectral filer, therefore all frequencies are transmitted. In high occupation number 
Eq.(17) can be approximate to, 

)
1

1ln(
i

i
n

  or  
ii nln .  We expand lnni around 1 and obtain that 

ii nn

11
ln   therefore 1

ln

ln






n
.  In Fig.(2) a plot of lnni Vs. lnΦi is 

shown, for in the classical regime a power-law like distribution is obtained, and 
moreover, the exponential truncation in the quantum regime appears. It is worth 
noting that the only assumption of this curve is equilibrium. Namely, all modes are 
at the same temperature (Gupta, et al. 2005). 

 

 
Figure 3. A log-log plot of the occupation number versus the relative boson energy 

 
Since many phenomena that related to natural processes exhibit the power-law 

distribution (Newman, 2006) it attracts a considerable attention. To mention few: 
the frequency use of words, the number of hits of web sites, the copies of books 
sold, the population of cities etc. The slopes obtained from the empirical power-law 
distributions are around –1. This is similar to the Gaussian distribution of 
momentum that obtained from the exponential distribution of energy in the canonic 
limit. A connection of the Planck statistics to complex networks was discussed 
previously (Bianconi & Barabasi, 2001) and the similarity between the mapping of 
the Bose-Einstein gas and a network model was discussed. A possible explanation, 
based on the present theory, for the reason why so many phenomena exhibit a 
power-law distribution, found in section VI. 

 
6. Combined Systems 
 In previous publications (Kafri, 2007a; 2007b) it was shown that for a classical 

ensemble the Shannon information is entropy, an amplifier is a Carnot cycle and 
broadcasting from one antenna to several antennas is a heat flow from a hot bath to 
a cold bath. In addition, an informatics perpetuum mobile of the second kind 
defined. Here it is shown that a classical ensemble has a power-law energy 
distribution while in the quantum limit when Φ>>1, the canonic distribution 
dominates and the regular Gibbs-Boltzmann thermal thermodynamics takes place. 
Therefore, the Shannon information and the thermal entropy are two faces of the 
same entropy.  

Under what condition thermal entropy will generated and under what condition 
information will generated? When there are two possible ways to generate entropy 
in a system, the sum entropy will be the combination of the two that maximizes the 
total entropy of the system (Dawkins, 1976). Hereafter a simple example of such a 
combined system is considered.        

6.1. Hooke's law Harmonic Oscillator 
Consider a Hooke's law oscillator, at a room temperature T, having a spring 

constant κ and an amplitude AL. The total energy of the oscillator is 2

2
1

LL AE  . 
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The temperature of this oscillator from Eq(5) is TL=EL/kB. To increase the 
amplitude of the oscillator to higher amplitude EH, a work W should applied. The 

new amplitude will HBHLH TkAWEE  2

2
1  . The inequality stands for the 

situation in which the applied work is not with a resonance with the frequency of 
the oscillator and therefore part of the work wasted to heat.  It is seen that, 

 

H

L

H T

T

E

W
1  ,                   (18) 

 
Namely, the efficiency of the amplification of the oscillator is the Carnot 

efficiency. Increasing the energy of the bits in a file was shown (Kafri, 2007a; 
2007b) to be a classical Carnot cycle, which comprises of two isotherms and two 
adiabatic. Here it shown that single oscillator amplification is also a Carnot cycle. 
The Hooke oscillator has a weight of a finite mass that affects its frequency. The 
mass of the weight consists of a large number of particles; each particle has its own 
degrees of freedom. Each of these particles carries similar entropy to that of the 
whole Hooke's oscillator, which is a single oscillator. Therefore, the temperature of 
the Hooke oscillator is much higher than the thermal temperature of the weight, 
which is in the room temperature. The Hooke oscillator temperature is similar to 
that of antennas (Kafri, & Kafri, 2013) (for a typical cellular antenna was shown to 
be ~1015K) or for a laser (for a 0.7µm laser with 1016 photons per mode, is ~1020K) 
and is of the same order of amplitude, namely ~1020K. These kinds of temperatures 
are impossible to obtain by heating up a blackbody by conventional means. 
Nevertheless, these temperatures can obtained by non-thermal resonance pumped 
sources.  

Removing energy from the Hooke's oscillator does not change its entropy 
because it is a harmonic oscillator and therefore it has a constant entropy, kB. 
However, dumping the oscillator's energy to a canonic ensemble increases the 
entropy according to Eq(4). Therefore, the Hooke oscillator will dump 
spontaneously its energy to its thermal bath. This example and similar phenomena 
are responsible for the common intuition that the information energy dumped 
spontaneously into a thermal energy. In fact, this is an example of heat flow from a 
hot harmonic oscillator to a cold thermal bath.  

 
6.2. Information versus Thermal Entropy 
Does nature prefers the informatics systems or the thermal canonic systems? 

This is an interesting question, as we know that our world consists of a mixture of 
the two. The common intuition, which based on the canonical thermal physics, 
suggests a pessimistic end to any closed system, namely, a canonic thermal 
equilibrium (the heat death that suggested by Kelvin). The common intuition 
suggests that informatics is a non-equilibrium phenomenon (Xiu-San, 2007). Since 
a file, is a sequence of harmonic oscillators, at the end, the information's energy 
will relax into a thermal equilibrium exactly as the Hooke's oscillator transfers its 
energy to its bath. However, this is not what the Planck's statistics suggests. As we 
see in Fig. 3, there are much more low energy bosons than high-energy bosons.  

Eq.(13) suggests that for a given temperature T, when  Φ is decreased, n is 
increased according to, 

 

 )
1

1ln(
i

i
n

                   (19) 

When Φ <1, it means that a boson has less energy than the average. When Φ >1 
it means that a boson has more energy than the average. Eq(19) suggests that in 
equilibrium there are more poor energy classical bosons as compared with rich 
energy (lucky) canonic bosons. A blackbody radiation is a good example of a 
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mixed system. The number of modes in the volume of a blackbody increases with 
the frequency cube; the wavelength of the light limited by the diameter of the 
blackbody. Therefore the occupation number decreases with the frequency 
according to Eq.(17). The result is the familiar Blackbody radiation spectrum curve 
that gives similar amount of energy to the poor photons and to the rich photons. 
Therefore, in blackbody emission, the number of the poor photons is much higher 
than that of the rich photons.   

 
7. Summary and Discussion 
Based on a toy model, it shown that the Planck distribution, in the quantum 

limit, yields the regular canonic thermodynamics. In the high occupation limit, the 
harmonic oscillator statistics replaces the canonic statistics. The harmonic 
oscillators' statistics differs in several aspects from the canonic statistics as is 
shown in table 1. An important feature of this statistics is that the normalized 
thermodynamic functions like entropy and particles distribution do not contain 
physical quantities. In the canonic entropy the exponential term does not canceled 
out in the normalization process. Therefore, the canonic entropy is a function of the 
temperature and the frequency. Any fluctuation of the energy and/or the 
temperature affects its magnitude. In the high occupation limit entropy, all the 
physical variables and parameters disappear and we obtain the Shannon 
information. Therefore, the entropy is not sensitive to any fluctuation in the 
occupation number, the source temperature and/or frequency.  It is not even 
sensitive to the number of modes in a bit. This property of the entropy, in the high 
occupation limit, makes it appropriate to convey data.  

 
Table 1. The thermodynamic properties of the Bose-Einstein gas in equilibrium at 
temperature T for photons (with zero chemical potential) for the classical and the canonic 
distribution. p is the probability of the energetic modes and n is the occupation number. 

 High Occupation   n >> 1 Canonic  n << 1 
Temperature  
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Carnot cycle Amplifie Heat engine 

 
The logical quantities, in the high occupation limit, are therefore applicable to 

many phenomena of our life. The Planck distribution of photons is a simple 
combinatory of states and particles without interactions. The only constraint 
encapsulate in it is the quantization. Namely, it is possible to add or to remove 
energy from any mode in an integer amount of some undivided particle (a quant). 
As is seen in Eq.(15) when we keep the quant size fixed (a constant frequency) and 
we also assumed equilibrium (equal temperature for all the modes), than the 
normalized distribution of the photons is not a function of the energy, the 
frequency, the average energy or the temperature. The physics is faded away, and 
we remain with a statistical system of inert quanta. Systems like these are very 
common in life. Consider the distribution of the population of cities. Each city may 
considered as a mode. When we count the number of the peoples in a city, the 
peoples are, per definition, indistinguishable. Since the number of the peoples is 
quantized, therefore this system is identical to that of Eq.(15). Similarly, the 
number of books being sold in a certain period is a homological system to that of 
the population of cities. In this case, the number of the titles is the number of the 
modes and a single copy sold is a quant. The number of hits in the Internet is also a 
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system of this kind as the number of the sites is the number of modes and a hit is a 
quant.  

In the derivation of Benford's law Eq.(14) was used, namely, 

)
1

1ln()(
i

i
n

n  . This equation yields slope of "-1". In the normalization 

process Φ disappears. A slope "-2" is obtained if we substitute ψ2(n)= ρ(n), with a 
phenomenological analogy to the substitution of momentum instead of energy in 
canonic exponential distributions to obtain the Gaussian distribution.  

The present model does not consider any interactions between the quantized 
particles. Nevertheless, interactions do exist. If we consider, for example, the 
distribution of the hits among the sites in the Internet, it is obvious that there are 
interactions between the visitors of the sites. The interactions might be 
advertisements by the sites and/or viral spread of the recommendations by the 
visitors. So what is the reason for a somewhat oversimplified model without 
interactions being so effective? A possible explanation is that the distribution of the 
hits is independent of the interactions; however, a specific rank of a certain site 
does depend on the interactions. Namely, the interactions are responsible only for 
the specific site location in the distribution. If that is true, removing a several 
popular sites will not change the normalized distribution. Other sites will take the 
place of the removed sites and the distribution will reach equilibrium again. Indeed, 
this is what seen in almost any economical system, namely, "there is no empty 
space". Unlike the derivation of Benford's law, the present model does not pretend 
to be a complete solution to the power-law distribution in social systems. 
Nevertheless, it argued that extensive equilibrium thermodynamics might predict 
the quantitative behavior of social systems.    

Another notable property of the logical equilibrium is the quenched 
randomness. For the receiver, a random file is content. However, within the context 
of IT, a random file, which is a compressed file, is an ensemble of harmonic 
oscillators in equilibrium, as is seen in Eq(12). An outcome of this conclusion is 
that files should have a tendency to compress spontaneously. Aside from the 
natural spontaneous noise, we are obsessed with compression. In IT we compress 
files for economical reasons. However, an observer in space sees that most of the 
transmitted files on earth are compressed. This observer will rightly, conclude that 
files have a tendency to be compressed. Our tendency to compress seen also in art. 
We find ourselves impressed by an artist who can express a complex feeling with a 
few words, or by a painter who can represent a detailed picture with a few lines and 
colors. The artistic kind of compression known in IT as a lossy compression and is 
very popular in multimedia technology. The language is a most powerful 
compressor; sometimes, the amount of information in a short sentence is enormous 
considering the fact that it contains just a few bytes. A notable example is the 
mathematics, which enables to write relatively short formulas that describe 
complex logical processes. It is possible that our tendency for symbolism and 
mathematics is the natural tendency toward equilibrium.  

The last issue and the most intriguing one is how the tendency of information to 
increase affects life. Conventional canonic thermodynamics explains how we 
decompose chemical compounds in order to produce mechanical work, and heat to 
enable our body to function properly. This paper suggests that we also want to 
increase information. The increase of information could done by reproduction and 
by broadcasting. It is clear that the present evolution theories are with full 
agreement with the present theory (Dawkins, 1976). The only modification 
required is that reproduction and evolution are spontaneous processes. It was 
shown previously (Kafri, 2007a; 2007b) that information is multiplied in 
broadcasting. Therefore, it is not surprising that we are obsessed with a desire to 
broadcast ourselves. When Bob broadcasts a file with I bits to N receivers, he will 
increase the information by NI. A receiver will increase the information by I bits. 
Therefore, it is better, thermodynamically, to broadcast than to receive. 
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 It is an observable fact that information and life in their various forms increase 
with time; therefore, it is plausible that aside from the chemistry necessary for the 
existence, life means a reproduction and a compressed communication. 
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